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Abstract
High performance embedded systems are required to satisfy tight

power, unit cost, and performance criteria. An embedded system
will only run one application in its lifetime, so in principle there are
opportunities to ‘tune’ the embedded system to the target applica-
tion. In today’s highly competitive marketplace such tuning must
be achievable without large-scale manual intervention.

An obvious way of tuning embedded processor architectures is to
remove unused registers and instructions thus saving hardware real
estate. More interestingly, common sequences of instructions could
be implemented as special custom instructions. Such instructions
have the potential to reduce code size and instruction fetch time
along with overall execution time.

This thesis describes new algorithms for the generation of can-
didate custom instructions; providing an analysis of weaknesses in
current approaches and giving experimental evidence and proofs of
correctness and time complexity.
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Chapter 1

Introduction

This thesis presents techniques for use within an application specific processor

design toolchain to efficiently create a library of candidate instructions that

may be included in the instruction set of a custom processor.

1.1 Background

Modern embedded processors may be required to decode videos, process fi-

nancial transactions, and process extremely large amounts of other data: this

requires the highest performance whilst also meeting demanding cost and power

constraints.

For a particular application, a new processor can be designed that is partic-

ularly optimised for that application. Successful application specific processors

(ASPs) must deliver lower cost solutions than a general purpose embedded

processor.

The non-recurring engineering costs for designing a hand-crafted ASP are

approaching one hundred million US dollars [IL06], which can only be justified

for very high volume products. The development of customisable processors

over the last decade has been an attempt to bridge the gap between standard

processors and hand-crafted ASPs by allowing a set of changes to a processor

without the heavy costs of designing from scratch.
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Modern embedded systems typically use Field Programmable Gate Arrays

(FPGA) —a fixed array of gates and flip-flops with programmable intercon-

nectivity. Early examples of such systems used standard processor chips sup-

ported by FPGAs containing application specific interfaces and hardware. As

FPGA capacities increased it became possible to implement the processor di-

rectly within the FPGA. Customisable processors exploit the potential to ex-

tend the architecture directly by adding functional units to the data path and

appropriate structures to control them.

A number of such customisable processors have been marketed. These in-

clude the ARM Optimo-DE [S:A], the MIPS Pro Series [S:M08], the Tensil-

ica Xtensa [Gon00], the Molen [VWG+04], the Altera Nios II, the MIPS Core

Extend, the STMicroelectronics ST 200 [FBF+00] and the ARC Arctangent, to

name just a few.

1.1.1 Example

Customisable architectures are extensions to already available architectures. In

this we shall use the simplescalar architecture [ALE02], a paper architecture

that was developed for academic use, for our examples. The simplescalar code

in Figure 1.1 is part of a heavily executed loop in a security benchmark. If

a modified simplescalar processor were available that had additional custom

functional units to perform instructions such as laa (load and add one) and

xas (xor and store), then this modified processor could run the code shown in

Figure 1.2 and would require only 8 clock cycles, rather than 11. This is a 27%

performance improvement.

1.1.2 Automatic customisation of instruction sets

By extending the instruction set of a customisable processor in this way, a

designer can have many of the advantages of a hand-crafted ASP for a fraction
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4195264: lw $5,0($30)

4195272: addu $6,$0,$5

4195280: sll $5,$6,0x2

4195288: addu $4,$4,$5

4195296: lw $5,0($4)

4195304: xor $3,$3,$5

4195312: sw $3,0($2)

4195320: lw $3,0($30)

4195328: addiu $2,$3,1

4195336: addu $3,$0,$2

4195344: sw $3,0($30)

4195352: j 4002d8 <sha_transform__FP8SHA_INFO+0xe8>

Figure 1.1 Motivation example for customisation of instruction sets

4195264: lw $5,0($30)

4195272: addu $6,$0,$5

4195280: sll $5,$6,0x2

4195288: addu $4,$4,$5

4195296: lw $5,0($4)

4195304: xas 0($2),$3,$5

4195320: laa $3,0($30)

4195344: sw $3,0($30)

4195352: j 4002d8 <sha_transform__FP8SHA_INFO+0xe8>

Figure 1.2 Code in Figure 1.1 modified using custom instructions
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of the cost. However, adjusting an instruction set by hand is difficult and time

consuming. In Chapter 3 we shall show that there may be millions of different

potential custom instructions. Some instructions may even make other custom

instructions completely or partially redundant. A designer must consider all

of these issues and the way in which a new instruction set affects a target

application that could be many thousands of instructions long. For a designer

to choose several new instructions that provide some improvement is simple—

however, extracting the maximum amount of improvement from an instruction

set is extremely difficult.

There has been much recent research into developing tools to perform this

instruction set customisation automatically.

Most methods for performing automatic customisation of an instruction set

split the problem into the subproblems of (a) identifying all potential candidate

instructions and of (b) selecting a set of candidate instructions that give the

largest possible improvement, measured by some fitness criteria provided by the

designer, to the original processor.

1.2 Modifying compilers to support instruction set customi-

sation

Figure 1.3 shows the internal structure of a high performance compiler that has

been augmented by the elements needed to support instruction set customisa-

tion, including candidate enumeration (the main topic of this thesis).

We use the existing compiler front end to parse and analyse the application

source code yielding a Control Flow Graph (CFG, a representation of all po-

tential control flow paths), a set of Data Dependence Graphs (DDGs, in which

edges represent the flow of data between instructions), and a symbol table. We

modify the compiler back end to extend instruction selection to the selected

custom instructions.
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Figure 1.3 Toolchain for instruction set customisation
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1.2.1 Instruction selection

This thesis is mainly about instruction enumeration; however, we note here that

there is an extensive literature on instruction selection —the second of the two

subproblems.

The instruction selection process is passed a set of candidate instructions,

a set of existing instructions, a set of fitness criteria, and a target application.

The instruction selection process must find a set of candidate instructions that

maximise the fitness criteria.

Candidate instructions cannot be considered separately because they may

overlap, and hence make each other redundant. Each combination of instruc-

tions must be considered individually. For most real examples an exhaustive

approach is impractical so a number of heuristics have been developed to attack

the problem.

The problem of selecting the best subset of a set of candidates has been

restated in different ways so that approaches from other branches of computer

science can be used. However, each redefinition requires the abstraction of some

detail of the design process. Early approaches have used simulated anneal-

ing [HD94], heuristics based on solutions to the subset-sub problem [CKY+99],

or heuristics based on backtracking [GP03].

Several approaches have attempted to use linear integer programming—

originally in [SIH+91] and later [ADO05] (extended in [ADM+07]). The ap-

proach of [ADO05] identifies candidates by first using linear integer program-

ming, orders the candidates by use of a merit function and then chooses the

first n instructions regardless of any interaction between them. The ‘pseudo

optimal’ approach in [PAI06] takes account of interaction between instructions

and provides a useful theoretical framework. However, its methods have a large

computational overhead and it is impractical for examples of reasonable size.

The same paper also proposes use of genetic algorithms with various seed sets.
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1.2.2 Code generation

The code generator examines the CFG, the DDGs, and the customised instruc-

tion set. From these it generates an assembly language program that takes

advantage of the newly introduced instructions.

The code generator must be automatically reconfigured, or generated, so

that it can make use of the availability of new instructions.

A number of different approaches to automatic code generator generation

have been presented. The majority of such methods parse syntax trees to

produce assembler code.

Early work by Graham and Glanville [GG78] used LR parsing techniques

for code generation. The work was extended by Ganapathi and Fischer in 1985

to include attribute grammars [GF85].

Twig [Tji85] is a tool for code-generator generation that combines tree pars-

ing with dynamic programming and has been used to create code generators

for the Vax architecture that use only 112 rules [App87].

In contrast to approaches like G&G and Twig, [HO82] showed that, by

constructing an automaton to precompute the possible choices made by the

compiler, they could shift the computation to compiler construction time pro-

viding there was space to store the precomputed data, the tables of which could

be exponential in the number of sub-patterns and the arity of the operators.

Later methods include Burg [PFH92] and iburg [FHP92].

Although the area is dominated by tree-parsing methods, there are several

methods targeted at Directed Acyclic Graphs (DAGs). The methods published

in [LB00] and [Ert99] work directly with DAGs to solve the problems inherent

with tree parsing such as the inability of tree parsers to utilise instructions

performing parallel computations.
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1.3 Thesis overview

Chapter 2 shows that enumerating candidate instructions for a target applica-

tion is equivalent to searching a collection of Directed Acyclic Graphs (DAGs)

for vertex sets that satisfy certain conditions. The motivation for each of these

conditions is discussed and the notation used in this thesis is given. Chapter 3

gives theoretical bounds on the number of candidate instructions and compares

these bounds to the number of candidates in commercial benchmarks.

A review of previous work in the area is included in Chapter 4. Special

attention is paid to the review of the union algorithm in Chapter 7. Imple-

mentations of some of these algorithms are used in experiments throughout this

thesis to compare with our own work.

Chapters 5 and 6 present algorithms that represent a substantial step for-

ward for candidate instruction enumeration.

Chapter 5 presents several algorithms for enumerating candidate instruc-

tions, and Chapter 6 presents several algorithms for the case in which register

reads and writes are constrained.

Concluding remarks and a short discussion of future work are included in

Chapter 8.

Each chapter includes the relevant experimental work and results, and de-

tails of the experimental setup used in this thesis are in the appendix, as are

descriptions of each test case.

1.4 Summary

This chapter has introduced the instruction set customisation problem as part

of a compiler toolchain. It is clear that libraries of candidate instructions are

needed for instruction customisation, and must be efficiently generated.



Chapter 2

Notation and problem formulation

Given a set of basic instructions we wish to consider a set of useful custom

instructions, obtained by combining basic instructions. This is achieved by

forming convex sets of the vertices in a data-dependency graph (a vertex set

A is convex if any vertex that is on a path between two vertices in A is also

in A). In practice, a given application may force additional constraints on

the candidate instructions and this chapter will discuss three examples of such

constraints: forbidden operations; connectivity; and Input/Output constraints.

2.1 Notation and definitions

This chapter provides most of the terminology and notation used in this thesis

along with several basic results.

2.1.1 Vertices and edges

We define a directed graph D to be a finite set of vertices V (D), and a set

of directed edges E(D) ⊆ V (D) × V (D), which represent data dependencies

between operations.

We say there is an a− b edge in D if (a, b) ∈ E(D).

A directed graph D′ is a subgraph of D if V (D′) ⊆ V (D) and E(D′) ⊆ E(D)
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If A ⊆ V (D), then DA denotes the induced subgraph of A in D. That is,

V (DA) = A,E(DA) = {(a, b)|(a, b) ∈ E(D) and a, b ∈ A}.

DEFINITION 1 For B ⊆ V (D) and b ∈ B, if there is no edge (a, b) ∈

E(D), a ∈ B, then we say that b is a source vertex of B. The set of source

vertices in B is denoted by source(B). Likewise, if there is no edge (b, a) ∈

E(D), a ∈ B, then we say that b is a sink vertex of B. The set of sink vertices

in B is denoted by sink(B).

2.1.2 Walks and paths

DEFINITION 2 A walk is a sequence n0, n1, . . . , nk such that: for 1 ≤ i ≤ k,

(ni−1, ni)∈ E(D).

We say that a walk n0, n1, . . . , nk contains the vertices ni, 0 ≤ i ≤ k, and

the edges (ni−1, ni), 1 ≤ i ≤ k. For a walk W , E(W ) denotes the set of edges

contained in W . If k = 0 then W is the empty walk from n1 to itself.

DEFINITION 3 A path is a walk in which each vertex in the walk is distinct.

We say that n0, n1, . . . , nk is a walk (path) from n0 to nk or a n0−nk walk

(path). Moreover, for vertex sets A,B with n0 ∈ A and nk ∈ B we say that the

walk (path) n0, n1, . . . , nk is a walk from A to B, or A-B walk (path).

DEFINITION 4 A cycle is a walk n0, n1, . . . , nk such that k ≥ 2, the vertices

n0, . . . , nk−1 are distinct, and n0 = nk.

DEFINITION 5 A directed graph is acyclic if it contains no cycles.

The following well known result, proved in, for example, [BJG00], will be

required.

Lemma 1 Given a directed graph D with vertices a, b ∈ V (D), if there is an

a− b walk, W , in D, then there must also be an a− b path P in D, such that

E(P ) ⊆ E(W ).
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For any set of paths, P, let E(P) =
⋃{E(P ) : P ∈ P}.

DEFINITION 6 A set of vertices Va is convex in D if every path in D be-

tween two vertices in Va is also a path in the induced subgraph DVa .

We let S(D) denote the set of subsets of V (D) that are convex in D and

note that ∅ ∈ S(D).

Note, if A ⊆ B ⊆ V (D) and A is convex in D then A is convex in DB . The

converse in not true in general, but is true if B is also convex in D. That is, if

A ⊆ B ⊆ V (D), B is convex in D, and A is convex in DB , then A is convex in

D.

DEFINITION 7 The convex closure of a set of vertices A is the set of all

vertices of V (D) that lie on a walk between elements of A.

DEFINITION 8 Given a set A, let D′
A be a directed graph such that V (D′

A) =

V (DA) = A and (a, b) ∈ E(D′
A) if (a, b) ∈ E(DA) or (b, a) ∈ E(DA). Then A

is connected if, given any two vertices v, u ∈ A, there is a walk from v to u in

D′.

We let Sc(D) denote the set of subsets of V (D) that are connected and

convex in D.

DEFINITION 9 A set A ⊆ B ⊆ V (D) is a connected component of B if A

is connected in D and there is no set C such that C ⊆ B is connected in D and

A ⊂ C.

Given a set B ⊆ V (D) whose connected components are C1, . . . , Ck, we note

that B is the disjoint union of C1, . . . , Ck. That is Ci ∩ Cj = ∅ if i 6= j, and

B = C1 ∪ . . . ∪Ck. Moreover, any Ci is convex in DB , and if B is convex in D,

then Ci is convex in D.

It is then easy to check that if A ∈ S(D) and D has connected components

C1, . . . , Ck, then A is the disjoint union of A ∩ C1, . . . , A ∩ Ck. Then there are
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some A1, . . . , Ak such that Ai ∈ S(DCi
), A = A1 ∪ . . .∪Ak, and that if we have

A1, . . . , Ak such that Ai ∈ S(DCi
), then (A1 ∪ . . .∪Ak) ∈ S(D). It follows that

Sc(D) = Sc(DC1
) ∪ . . . ∪ Sc(DCk

).

2.1.3 Topological ordering

If D is acyclic then let V (D) = {v1, . . . , vn−1, vn} such that (va, vb) ∈ E(D)

implies that a < b. For any pair of vertices va, vb, if a < b, then we say that va

is topologically before vb. If a > b, then we say that va is topologically after vb.

For a set A ⊆ V (D), if there is no vertex in A that is topologically before vertex

a ∈ A, then we say that a is the topologically first vertex in A. If there is no

vertex in A that is topologically after a, then we say that a is the topologically

last vertex in A.

2.1.4 Reachability functions

For a vertex v ∈ V (D), let dom(v,D) denote the set of vertices m such that

v 6= m and there is a m− v path in D. Similarly, let dom(A,D) denote the set

of vertices m 6∈ A such that there is an m− a path in D for some a ∈ A.

For a vertex v ∈ V (D), let domBy(v,D) denote the set of vertices m such

that v 6= m and there is a v−m path in D. Similarly, let domBy(A,D) denote

the set of vertices m 6∈ A such that there is an a−m path in D for some a ∈ A.

2.1.5 Complexity

In this thesis we compare the performance of a number of different algorithms.

We are interested in both the theoretical worst-case bounds and the typical

performance as measured on some set of examples.

From a theoretical perspective we are interested in the changes to the run-

ning time and memory requirements of an algorithm as the size of the input

increases. The time complexity of an algorithm is a measure of the time re-
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quired by an algorithm to process an input of given size. We will often write

complexity instead of time complexity.

In this thesis, we use the standard ‘big-O’ notation when discussing com-

plexity, which is defined by, for example [JS02], as,

O(f(n)) = {g| for some c,m, g(i) ≤ cf(i), for all i ≥ m}.

More informally, an algorithm has time complexity O(g(n)) for some g(n)

if its running time on inputs of size n is always less than a constant multiple of

g(n) when n is greater than some constant m.

2.1.6 Flow on networks

A network N is a directed graph associated with the function c : V (N) ×

V (N) → R such that ∀(a, b), if (a, b) 6∈ E(N), then c(a, b) = 0. We may write

cab instead of c(a, b).

A flow on a network is a function f : V (N) × V (N)→ R such that ∀(a, b),

if (a, b) 6∈ E(N), then f(a, b) = 0. We may write fab instead of f(a, b).

A flow, f , is feasible if 0 ≤ fab ≤ cab for all a, b ∈ V (N).

We define the function balance(v, f) as

balance(v, f) =

(

∑

a∈V (N)

fva

)

−
(

∑

a∈V (N)

fav

)

.

Let s, t ∈ V (N). A feasible flow, f , on N is a flow from s to t if

1. balance(s, f) = −balance(t, f) > 0,

2. balance(v, f) = 0 for v 6= s, t.

We may call a flow from s to t, an s− t flow.

The value of an s− t flow is balance(s, f).
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For a given s, t ∈ V (N), a maximal s − t flow on N is a flow f from s to t

such that there is no flow f ′ from s to t with a larger value. Example 1 depicts a

network N and its associated flows by labelling the edges fab/cab, (a, b) ∈ E(N)

to show a maximal s− t flow f on a network, such that f has value 4.

In this thesis we shall construct networks in such a way that there is a

single sink vertex for the network and a single source vertex; we shall only be

interested in source − sink flows, and we may call a maximal source − sink

flow, a maximal flow of the network.

Example 1: A flow on a network

2.2 The target program as a sequence of directed graphs

Directed graphs can be used to represent control flow and data dependencies

within application programs.

DEFINITION 10 A sequence of instructions forms a basic block if the in-

struction in each position dominates, i.e always executes before, all those in

later positions, and no other instruction executes between two instructions in

the sequence [S:w08].

DEFINITION 11 A control-flow graph is a representation of the possible

paths through a program. Each node in the control graph corresponds to a basic

block. Directed edges are used to represent jumps in the control flow.
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DEFINITION 12 A data-dependency graph (DDG) is obtained from a basic

block by forming a vertex for each operation and adding an edge to each vertex

u from each operation that computes an input operand of u.

DDGs form directed acyclic graphs (DAGs) because they represent the com-

putation performed by a basic block. For details of the process of generating

DDG from basic blocks see Appendix B. An example data dependency graph

is shown in Example 2.

The first explicit use of DDGs in candidate enumeration appears in [HD94]

in 1994 and it has since become a de facto standard.

2.2.1 Candidate instructions as vertex sets in a DDG

A candidate instruction will perform a set of basic instructions as a monolithic

computation. This candidate instruction corresponds to a subset, C say, of the

vertices in D. Then the subset C uniquely identifies a candidate instruction

applicable to D. It is these subsets that are sought when enumerating candidate

instructions.

Example 2 shows a DDG with several highlighted sections. Section A of

Example 2 represents a custom instruction to multiply three operands a, c,

and 4. Similarly, an instruction to perform two unrelated computations in

parallel, such as the ADD and MULT instructions towards the bottom of

Example 2, could be identified in the DDG as the highlighted section B.

2.2.2 Interactions between compiler phases

The process of generating candidate instructions, from basic instructions, by

examining DDGs is not independent of other ‘code optimisations’ performed by

compilers because each basic block is examined individually. The interactions

between such optimisations and custom instruction set selection are currently

an area for future research. It is possible that some optimisations reduce the



The target program as a sequence of directed graphs 36

VAR:a VAR:c INT:4 VAR:b

ROOTINT:2

MUL

MUL

MUL

SUB

MUL

ADD

NEG

DVI

~ =

q �

W

9z

?R

�

XXXXXXXXz

z


j

�

�

A
C

B

Example 2: Data dependency graph for −b+
√

b2−4ac
2a

opportunity for custom instructions, and that reliance on custom instructions

prevents the use of equally efficient (and cheaper) code optimisations.

In particular, if loop unrolling is performed on a basic block, then the set

of candidate custom instructions can be radically different [BP06], although

not necessarily better. We anticipate that customisation of the instruction set

will occur after all other optimisations have occurred. Then, one can assume

that the quality of the target application is as high as possible before any

improvements are achieved by instruction set customisation.

Ideally, the customisation of an instruction set would be one of a range

of code improvements that interact together to find the best combination of

transformations, rewritings and custom instructions. However, to date code

improvement theory has not advanced to the stage that code improvements

can reliably interact with each other, and certainly not with different phases of

the process.
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2.2.3 Other representations

Graph based approaches for candidate enumeration have been popular since

they were introduced in [HD94] (the algorithms in [PAI06, CMS07, YM08] are

recent examples). Earlier methods, such as [KLST04, GP03, CPH03] exam-

ine assembly code and attempt to fuse adjacent instructions, or use existing

scheduling techniques to label parallel computations as a single instruction.

These representations may prevent algorithms from enumerating complex can-

didate instructions.

2.3 Convexity

It is not the case that all sets of vertices in a DDG represent useful custom

instructions. The highlighted section C of Example 2 shows an example of a

subset that does not correspond to a useful custom instruction.

If section C were to be implemented as an instruction, then it would take

as input the result of SUB. However, one of the inputs to the vertex SUB is

one of the outputs of the proposed custom instruction and thus the execution of

the instruction depends on an instruction that itself depends on the execution

of the first instruction. If we restrict ourselves to convex vertex sets such a

situation cannot arise.

Recall from Definition 6 that a set of vertices Va is convex in D if every path

in D between two vertices in Va is also a path in the induced subgraph DVa .

Although one can imagine specialised datapath layouts that allowed infor-

mation to pass in and out of an instruction, it is widely accepted that the

hardware and scheduling difficulties outweigh any benefit. Thus in this thesis

only candidate instructions that are represented by convex vertex sets of a DDG

are considered valid candidate instructions.
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2.4 Additional constraints on candidate instructions

Certain architectural features may prevent candidate instructions from being

cost effective. These constraints can be defined in terms of vertex sets of a DDG

and specific algorithms can be designed that return only candidate instructions

that match certain criteria.

The most commonly used constraints are (i) forbidden vertices, (ii) connec-

tivity, and (iii) restrictions on the number of inputs and outputs to the instruc-

tion (I/O constraints). An important advantage of taking these constraints into

consideration is that it can reduce the number of candidate instructions that

the instruction selection phase must consider. It will be shown in Chapter 3

that the number of convex vertex sets (and hence candidate instructions) in

a DDG can be exponential in the size of the DDG. However, the number of

convex vertex sets that satisfy certain I/O constraints, is at most polynomial

in the size of the DDG.

Although these constraints can be used to identify, and hence remove, un-

wanted candidate instructions early, they carry a risk of removing candidate

instructions that would justify the extra cost of supporting the breach in con-

straints. For example, equipping a processor to support the relaxation of a

forbidden vertex constraint may allow candidate instructions that would dou-

ble the throughput of the processor.

The trade-off between the overall improvement made by a custom instruc-

tion set and the restrictions placed on candidate instructions would be an in-

teresting research area in its own right, however is outside the scope of this

work.

We now consider each of the three types of constraint mentioned above.
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2.4.1 Forbidden vertices

Given a DDG D, let F (D) be the set of forbidden vertices, specified by a

designer, such that F (D) ⊆ V (D). If the forbidden vertex constraint is used,

then no valid convex set contains any vertex that is a member of F (D). The

particular set of operations that are forbidden is dependent on features of the

target architecture and the decisions made by the designers.

There are two main situations in which a vertex in the DDG can be made

forbidden without adversely affecting the quality of the set of identified candi-

date instructions. Firstly, the vertex may not represent an operation — it may

instead be an extra vertex added to the DDG to represent some computation

external to the basic block. Secondly, the vertex may represent an operation not

suitable for including in a custom instruction. Memory operations are often ex-

cluded because they cannot reliably meet tight timing constraints. Other types

of operation that might be considered unsuitable for inclusion are floating-point

operations and operations that require more than one clock cycle to execute,

such as the multiply operation on early MIPS processors. Some approaches,

such as [GPY+06], do not consider any vertices to be forbidden.

2.4.2 Connectivity

Recall from Definition 8 that for a directed graph D, a vertex set A ⊆ V (D) is

connected if, given any two vertices v, u ∈ A, there is an undirected walk from

v to u in D2
A.

A vertex set that is not connected corresponds to two or more unrelated

basic or custom instructions that may be executed simultaneously.

There is potentially a tension between the role of the code scheduler and the

design of custom instructions. A scheduler may be able to efficiently schedule

instructions to exploit any available parallelism in the datapath. Then custom

instructions that also exploit parallelism are either made redundant or they un-
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dermine the scheduler by forcing unrelated operations to execute simultaneously

when there may be a more useful ordering available.

If the compiler code generator has been created by a tree-parsing tool such as

iburg [FHP92] or twig [AGT89], then only connected candidate instructions

are useful because disconnected candidate instructions cannot be effectively

utilised by the code generator [LB00].

The connectivity constraint does not ultimately restrict instruction choice

because the set of all candidate instructions can be constructed from the set

of connected candidate instructions. This approach of generating all candidate

instructions from the set of connected candidate instructions is taken both

by [YM07], and the partial solution approaches in Chapter 5.

Some algorithms are able to incorporate the restriction to connected sets

with minimal adjustments. The most notable algorithm to enumerate only

connected sets was presented in [YM04], and methods that work efficiently both

with and without the connectivity constraint were presented in [BP07, CMS07].

Results published in [PAI06] suggest that using only connected convex ver-

tex sets reduces the effectiveness of the final instruction set. However, the cir-

cumstances of the test somewhat favour unconnected convex vertex sets. The

experiment in [PAI06] chose a small number of custom instructions and made

no attempt to recombine connected convex vertex sets into unconnected ones.

In addition, the benchmark chosen for the test naturally favoured operations

executed in parallel. Overall, outcomes of the experiment should be viewed in

context and interpreted with care.

2.4.3 I/O constraints

Algorithms that filter by I/O constraints only produce candidate instructions

whose register reads and writes (generally known as inputs and outputs) are

limited by specified bounds. This thesis denotes the designer specified input

and output constraints as inConstraint and outConstraint respectively.
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DEFINITION 13 Given a set A ⊂ V (D), a vertex v is an input vertex of A

if v 6∈ A, and there is an edge (v, a) ∈ E(D) such that a ∈ A. The set of input

vertices of a set A in D is denoted by IN(A,D).

DEFINITION 14 Given a set A ⊂ V (D) a vertex a is an output vertex of

A if a ∈ A, and there is an edge (a, v) ∈ E(D) such that v 6∈ A. The set of

output vertices of a set A in D is denoted by OUT (A,D).

Given a DDG D, a convex vertex set C ⊆ V (D), and specified I/O con-

straints of inConstraint and outConstraint, if we have either |OUT (C,D)| >

outConstraint or |IN(C,D)| > inConstraint, then C does not satisfy I/O

constraints and will not be included in the final set of candidate instructions.

We let Sio(D) denote the set of subsets of V (D) that are convex and satisfy

I/O constraints.

Chapters 3 and 6 show that this restriction can make a dramatic difference to

both the number of candidate instructions and to the asymptotic complexities

of algorithms that enumerate candidate instructions.

In principle, I/O constraints can significantly reduce the number of valid

convex sets found. This is because most customisable processors have register

banks that can support a maximum of only two to five register reads and one

to three register writes per clock cycle.

However, some architectures allow the number of ports of the register bank

to be parameterised, allowing designers to add extra ports to the register bank

if there are useful custom instructions that perform too many register accesses.

So in principle a designer may want to consider all candidate instructions before

making a final decision on the number of ports for the register bank.

Approaches demonstrated in [PPIM03, Poz01, CFHZ04] identify candidates

with only one output and [BGJ+02] limits itself to two. Approaches such

as [PAI06, YM04, CMS07] do not fundamentally require I/O restrictions for

correctness but they are more efficient under these constraints.
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A variety of methods have been presented [JLM06, CFH+05, CHZ05, PI05,

ADM+07], which allow custom instructions to read and write more values than

the number of ports on the register file would normally allow. As a result, the

bounds used in I/O constraints can be increased. At the present time, methods

for candidate identification are yet to catch up and the algorithms in Chapter 5

make a contribution to narrowing this gap.
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Example 3: Showing that restricting by I/O constraints can be suboptimal

There are circumstances in which designers may choose candidate instruc-

tions that breach I/O constraints. Consider the instruction special1 represented

by the vertices {1, 2, 4, 5, 6, 7, 9} in Example 3. The instruction special1 would

ordinarily write values to two registers, which would be used by the vertices

{8} and {10}. If special instructions are restricted to only writing one value

to a register, then special1 would be discarded. However, the best solution for

Example 3 may be that special1 is implemented to only write the value required

by {10}. The pseudocode to execute this fragment of DDG would be:

$3$

$special1$

$4$

$8$
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Although the operation of vertex {4} will have been executed twice, this

may still be the best solution, especially if the modified version of special1 is

applicable elsewhere in the program. Thus general methods that do not employ

I/O constraints may still be preferred.

I/O constraints and forbidden vertices

Inputs and outputs to a basic block are represented by additional forbidden ver-

tices in the DDG. For this reason, algorithms that enumerate valid convex sets

under I/O constraints usually filter by a forbidden vertex constraint. Moreover,

this allows us to assume that every vertex in V (D) has a directed path to a

vertex in F (D) and from a vertex in F (D).

2.4.4 Heuristics for enumerating candidate instructions

Not all approaches define the candidate enumeration problem as above. Al-

though approaches like [PAI06, YM04, BP07, CMS07] deliver the entire set

of possible candidate instructions (the exhaustive methods)1, other approaches

like [ADO05, CFHZ04, CZM03, SRRJ02, GPY+06, BBD+05, CPH03] return

some number of ‘good’ candidate instructions (the heuristic methods).

Heuristic methods attempt only to select a number of ‘good’ candidate

instructions to pass to the instruction selection phase. The ‘goodness’ measure

can take a variety of forms and must be based on local information because

each basic block is considered individually. An example ‘goodness’ measure

is to compare the number of operations in a candidate instruction (totalOp)

with the number of operations in the longest directed path in the candidate

instruction (criticalOp). The motivation for this heuristic is that totalOp is

the number of cycles that the instruction will take to execute in software, and

criticalOp is the number of cycles that the instruction will take to execute as a

custom piece of hardware.

1subject to any other restrictions imposed by the user
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Heuristic methods include approaches such as the use of a linear integer

program solver [ADM+07] and combining only adjacent instructions. They

may also use simplifying restrictions such as prohibiting the overlap of any

candidate instructions [ADO05].

Recent approaches, such as [CZM03], search a section of the DDG and

attempt to intelligently ‘grow’ the search in a fruitful direction, and [SRRJ02]

compares discovered candidates with the current best selection, discarding any

that are ‘inferior’.

We distinguish between methods that are exhaustive with regard to some set

of constraints and heuristic approaches. While neither will return all possible

candidate instructions, an exhaustive method will guarantee to return all can-

didates that match the restriction(s), whereas a heuristic method cannot make

such a guarantee. The rest of this thesis concerns only exhaustive algorithms.

2.5 Summary

This chapter has described valid candidate instructions as sets of vertices in a

directed graph. It has gone on to define the properties that may be required of

vertex sets to be candidate instructions. For the remainder of this thesis, we

shall only discuss convex vertex sets of a DAG, and not candidate instructions

of a DDG.



Chapter 3

The computational complexity of

candidate enumeration

This chapter discusses upper and lower bounds for the number of convex vertex

sets in DAGs under a variety of conditions. It also introduces a number of

‘synthetic’ DAGs that will be used to test the efficiency of the algorithms that

are presented later in this thesis.

3.1 Provable bounds

In general, it is not possible to exactly calculate the number of convex sets in

a DAG without enumerating them explicitly. However, it is possible to show

upper and lower bounds for the number of convex vertex sets under certain con-

ditions. Furthermore, for any given number of vertices, we can construct DAGs

that display these bounds, and gain some insight into their relative frequency

in commercial examples.

3.1.1 The lower bounds of |S(D)| and |Sc(D)|

Recall that, if D is a DAG, there is an ordering v1, . . . , vn of the elements of

V (D) such that if (vi, vj) ∈ E(D), then i < j. Given such an ordering, define

a new graph Dlow such that there is an edge from each vi to every vj such that
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i < j. So

E(Dlow) = {(vi, vj) ∈ V × V | i < j}

It is easy to see that Dlow is also a DAG, and by construction E(D) ⊆

E(Dlow). We shall show by Lemma 2, that D has at least as many convex

vertex sets as Dlow and by Lemma 3, Dlow must have n(n+1)
2 + 1 convex vertex

sets.

Lemma 2 Suppose that G and H are DAGs where V (H) = V (G) and E(H) ⊆

E(G). If X ⊆ G is convex in G, then it is also convex in H.

Proof Consider the vertex set of G whose vertices are v1, . . . , vm say. If this

vertex set is not convex in H, then there is a path from vi to vj , 0 < i < j ≤ m

that includes some vertex u 6∈ {v1, . . . , vm}. Because E(H) ⊆ E(G), this path

also lies in G. Thus the vertex set {v1, . . . , vm} is also not convex in G. ⋄

Lemma 3 Let V (Dlow) = {v1, . . . , vn} and let E(Dlow) = {(vi, vj) | 1 ≤ i <

j ≤ n}. The DAG Dlow has

n(n + 1)

2
+ 1

convex vertex sets.

Proof All the vertex sets that contain a single vertex are automatically convex.

There are n such sets.

Of the vertex sets with two vertices {vi, vj}, i < j there is a path vi, vi+1, . . . , vj

so the only convex vertex sets are those corresponding to the sets {vi, vi+1},

and these sets are convex. There are n− 1 such sets.

In general, for a set {vi1 , vi2 , . . . , viq}, where i1 < i2 < . . . < iq, if for some j

we have ij+1 6= ij + 1, then the path vij , vij+1, . . . , vij+1
shows that the vertex

set is not convex. Thus the only non-empty sets of vertices that are convex in

Dlow are of the form Vi,j = {vi, vi+1, . . . , vj}. There are

n + (n− 1) + . . . + 1 =
n(n + 1)

2
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such sets.

For any pair of vertices vi, vj if there is a path vi, vi1 , . . . , viq , vj , then by

definition of Dlow we must have i < i1 < . . . < iq < j and so vik ∈ Vi,j for

1 ≤ k ≤ q. Thus the subgraph induced by Vi,j is convex, and as ∅ is convex

with respect to Dlow we have

n(n + 1)

2
+ 1

convex sets. ⋄

3.1.2 The upper bound of |S(D)|

There are 2|V (D)| possible vertex sets of a DAG D if convexity is disregarded;

it is also possible to construct a DAG in such a way that every possible vertex

set is convex. Example 4a is an example of a DAG in which every possible

vertex set is convex. Interestingly, Example 4a will also generate the minimum

number of connected convex vertex sets for a DAG with 10 vertices. However,

Example 4(b) generates maximum numbers of both convex vertex sets and

connected convex vertex sets for a DAG with 10 vertices.

1 13 34 40 02 2

6 68 89 95 57 7
? ?? ?? ?? ?~ ~~ ~~ ~~ ~? ?q z z+ q z+)99 +)9 +) q

(a) (b)

Example 4: DAGs showing upper bounds for the number of both unconnected
(a and b) and connected (b) convex vertex sets in a DAG

3.1.3 Upper bound of |Sc(D)|

Example 4b shows a DAG that generates the greatest number of connected

convex vertex sets for any DAG with 10 vertices. DAGs of a similar construction
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to Example 4b will generate 2n−2(n/2)+1+1 convex connected vertex sets where

there are n vertices in the DAG. A proof that this is an upper bound for |Sc(D)|

is given in [YG]. Section 3.3.2 gives a general construction of such a DAG.

3.1.4 Upper and lower bounds of the number of convex ver-

tex sets under I/O constraints

Example 5: DDG showing lower bound for the number of convex sets under an
input constraint of 3 and an output constraint of 2

It has been shown in [BP07] and [CMS07] that when restricting convex

vertex sets on the basis of I/O constraints, so a valid convex set can have no

more than In inputs and Out outputs, the largest possible number of valid

convex vertex sets is bound by |V (D)|Out+In. Lemma 4 gives a similar proof.

The lower bound on the number of convex sets under I/O constraints is zero

and Example 5 (in which forbbiden vertices are represented by f vertices) shows

a DAG that generates no valid convex sets (In = 3 and Out = 2).

Lemma 4 Given a DAG D, and the sets I, VOut ⊂ V (D), there is at most one

convex set C with IN(C,D) = I and OUT (C,D) = VOut in a DAG D.

Proof Let A and B be convex sets in D such that IN(A,D) = IN(B,D) = I

and OUT (A,D) = OUT (B,D) = VOut.

Let b ∈ B. There must be a path P from b to a member of VOut, and all

vertices on this path must be within B as B is convex.
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If b 6∈ A, then because Vout ⊂ A some vertex on P must be in |IN(A,D)|.

However, there can be no such vertex because IN(A,D) = IN(B,D) and

IN(B,D) ∩B = ∅ so we have a contradiction and b ∈ A.

By the same reasoning, if a ∈ A then a ∈ B. Thus A = B. ⋄

Lemma 5 For a DAG D, there can be no more than |V (D)|OUT+IN convex

sets with at most OUT output vertices and at most IN input vertices in a DAG

D.

Proof There can be at most |V (D)|OUT sets of output vertices of size no

greater than OUT . Similarly there can be at most |V (D)|IN sets of input

vertices of size no greater than IN . There are |V (D)|OUT+IN possible combi-

nations of an input set with an output set and by Lemma 4, each combination

can produce, at most, one convex set. Therefore, there can be no more than

|V (D)|OUT+IN convex sets that have no more than OUT output vertices and

IN input vertices in a DAG D. ⋄

3.2 Real world examples

From an engineering perspective, we are interested in the average number of

convex vertex sets over some set of examples. This section examines the number

of convex vertex sets in some of the test cases that are used in this thesis. The

number of convex sets that these test cases generate under certain conditions

are evaluated.

Studies have shown [HP92] that typically, the number of operations in un-

optimised, human generated basic blocks (and hence vertices in their attached

DDGs) is around six. If all basic blocks were this small, then the enumeration

of convex vertex sets would be trivial. However, code improvement techniques,

such as loop unrolling and if-conversion, can produce extremely large basic

blocks —even as large as 1,000-2,000 operations in length.
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Input Vertices Connected Convex
convex sets sets

Dijkstra1 15 211 848

Dijkstra2Con 16 245 960

BF1Con 16 278 9,728

sha 16 434 4,026

qsort1Con 17 3,912 65,120

Dijkstra3Con 19 2,475 135,040

qsort3Con 29 24,780 6,069,360

Patricia4Con 29 691,294 53,412,360

qsort2Con 31 8,240 4,139,576

BF4Con 31 21,500 803,734

BF2 32 68,876 1,225,422

sha2 38 12,597 1,052,848

susan4Con 38 4,607,411 75,457,856

cjpeg1Con 39 485,718 8,338,040

susan3 40 5,304,066 125,639,352

sha3 46 225,998 1,661,374

Table 3.1 Sample numbers of convex vertex sets

Table 3.1 and Table 3.2 show the number of convex vertex sets in an arbi-

trary selection of examples of DDG from the RHUL dataset. Table 3.1 gives

the numbers of convex vertex sets with no constraints and the numbers of con-

nected convex vertex sets. Table 3.2 gives the numbers of convex vertex sets

with various different I/O constraints1.

The results show that not only can there be a large number of convex

vertex sets (the example ‘susan3’ produces 125 million convex sets) but also

that examples of similar sizes can have large differences in the number of convex

sets (the example ‘sha3’ has more vertices than ‘susan3’ but has only one million

convex sets).

With such large DDGs and sets of convex vertex sets, it is clear that brute

force algorithms are insufficient for enumerating |S(D)|.
1Appendix B details the construction of the examples in the RHUL dataset and Ap-

prendix A details the conditions that these experiments were run under.
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Input Vertices In Out Convex Sets
(forbidden)

bf 467(134)

3 2 7,831
5 2 40,714
7 2 161,234
4 3 105,599
6 3 570,197
8 3 2,155,103

cjpeg 152(34)

2 1 406
4 1 544
6 1 550
3 2 41,363
5 2 113,611
7 2 140,335
4 3 2,201,568

rijndael 1237(391)

2 1 1241
4 1 4,787
6 1 15,236
3 2 75,241
5 2 648,748

sha 1811(351)

2 1 1,546
4 1 4,372
6 1 10,152
3 2 78,132
5 2 293,259

Table 3.2 Sample numbers of convex vertex sets under I/O constraints
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3.3 Synthetic DAGs

In this thesis we use four classes of synthetic DAG to examine the performance

of algorithms over families of similar examples.

3.3.1 Sequential

For a sequential DAG

V (D) = {v0, . . . , vn} and E(D) = {(vi, vi+1) | 0 ≤ i < n}.

Sequential graphs consist of ‘chains’ of operations and, as shown in Lemma 3,

if a sequential DAG of n vertices has x convex sets, then there is no DAG with

n vertices that has fewer convex sets. Example 6 shows a sequential DAG.

1

4

3

2

5
?

?

?

?

Example 6: Synthetic sequential DAG

3.3.2 Maximal

It is useful to be able to generate a synthetic DAG that produces the largest

possible number of convex sets for any given number of vertices. Any DAG that

contains no paths of length greater than one will produce the maximum number

of convex sets because there can be no combination of vertices that breaks the

convexity constraint. There are a number of different ways to construct such

a DAG: our construction also generates the maximum number of connected

convex sets. Our maximal form synthetic DAGs of size n are given by the
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directed complete bipartite DAG Kn/2,n/2 if n is even or Kn+1/2,n/2 if n is odd.

An example of a maximal DAG was shown in Example 4b.

3.3.3 Tree

For a synthetic tree DAG we have

V (D) = {v0, . . . , vn} and E(D) = {(vi, vi∗2), (vi, vi∗2+1) | 0 ≤ i < t}

where t = n/2 if n is even or t = (n − 1)/2 if n is odd. Example 7 shows a

synthetic tree DAG.

8 1210 14

4 65 7

9 1311 15
	 		 	~ ~~ ~

2 3
) )q q

1

z9

Example 7: Synthetic tree DAG

3.3.4 Lattice

For a synthetic lattice DAG we have V (D) = {v0, . . . , vn} and

E(D) = {(vi, vj), (vi, vj+1) | j = i + ⌊1
2

+
√

2i⌋, 1 ≤ j < n}.

An example of a lattice DAG is shown in Example 8.

3.3.5 Comparison of test cases to synthetic DAGs

In this section we show that, when examining DAGs obtained from commercial

benchmarks, the majority of test cases contain fewer convex sets than a tree

synthetic graph of the same size and more convex sets than a lattice synthetic

graph of the same size.



Summary 54

29 3331 35

22

4

11

1

16

2

7

26

15

20

24

6

13

18

9

25

14

19

10

28

30 3432 36
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~
23

5

12

17

3

8

27

21

+

��+

+

��+

��+

��+

s

s

s

s

s

s

=

=

s

s

=

=

=

=

~

~

~

~

Example 8: Synthetic lattice DAG

Figure 3.1 plots the relationship between the number of connected convex

sets and the number of vertices in the DAG for examples from the RHUL dataset

alongside results for the synthetic DAGs Maximal, Tree, and Lattice.

The graph shows that it is unusual for any of our commercial examples

to approach the maximum number of possible convex sets, although several

examples approach the minimum bound.

More interestingly, the number of connected convex sets in the majority

of our test cases lie between the number of connected convex sets from tree-

shaped DAGs of equivalent size and the number of connected convex sets from

lattice-based ones of equivalent size.

There are two notable test cases that fall outside this classification, but both

contain extremely long strings of operations and are similar in construction to

the sequential synthetic DAG. This is a highly unusual situation, which is a

result of the way that the sha algorithm produces its secure message digests.

Both cases are shown in Example 9.

3.4 Summary

In this chapter, upper and lower bounds on the number of convex sets in a DAG

have been shown for a variety of constraints.



Summary 55

Figure 3.1 Graph showing the number of convex connected sets in test cases
compared to synthetic DAGs
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(a) (b)

Example 9: The sha2 and sha3 benchmarks
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A selection of ‘synthetic DAGs’ that can be use to test specific properties

of enumeration algorithms have been introduced.

We have shown that the majority of test cases contain fewer convex sets than

a synthetic tree graph of the same size and more convex sets than a synthetic

lattice graph of the same size. For this reason the ‘tree’ and ‘lattice’ synthetic

DAGs will later be used as performance indicators for the algorithms presented

in this thesis.



Chapter 4

Previous work in candidate instruction

enumeration

The chapter focuses on previously published algorithms for exhaustively enu-

merating convex vertex sets, rather than the heuristic approaches discussed in

Chapter 2. This is because the quality of the instruction library generated by

such approaches can only be inferior to exhaustive enumeration. We present

these algorithms in unified form so as to bring out the similarities and differ-

ences between them.

4.1 Brute force

One can attempt to enumerate all possible instruction candidates of a DAG of

size n by ‘brute force’ as shown in Algorithm 1. A bitstring of length n is main-

tained, where a ‘1’ at position i in the bitstring indicates that the ith element

of the DAG is present in the vertex set currently being examined. Each new

vertex set is tested for convexity (and any other required constraints) and if the

test is successful it is added to the candidate instruction library. The bitstring

is then incremented to produce a new vertex set. This algorithm is slow, having

to examine each of 2n vertex sets for convexity (an O(n2) operation on its own)

and any other constraints. Algorithm 2 performs brute force recursively.
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Algorithm 1 brute(D): enumerating convex vertex sets by brute force

brute(D)
{

Let R be the power set of V (D)
S = R \ {∅}
∀X ∈ S do

if X is valid
{

store X
}

}

4.2 The exhaustive algorithm

The exhaustive algorithm (shown in Algorithm 3) was created by Atasu et

al [API03] and extended in [PAI06]. It finds all convex vertex sets in a DAG

by recursively building convex sets by adding vertices in topological order.

Computational overhead is reduced by pruning recursive calls if their re-

cursive descendents cannot contain any valid convex vertex sets. It was the

first algorithm to exhaustively enumerate all convex vertex sets in a given DAG

without having to examine every possible subset of vertices of the DAG.

The fundamental insight of the exhaustive algorithm is that if a subset X

is not convex in a DAG D, and u ∈ V (D) \ X is topologically later than all

vertices in X then X ∪ {u} is also not convex in D.

We use Example 10 to illustrate this. Figure 4.1 shows the call tree formed

by brute2() (Algorithm 2) when processing Example 10; recursive calls that

considered non-convex sets are marked with crosses. We note that any left

child vertex of a vertex marked with a cross also contains a non-convex vertex

set. By preventing such recursion, the exhaustive algorithm can reduce the

overall number of recursive calls and hence, computational overhead. We see the

reduction in recursive calls made by the exhaustive algorithm in Figure 4.2.

If the vertex set represented by a node in the search tree is not convex in

D, then it can be shown that no sets represented by descendants of that node
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Figure 4.1 Call tree for Example 10

Figure 4.2 Call tree for Example 10 pruned by the exhaustive algorithm
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Algorithm 2 brute2(D): recursively enumerating convex vertex sets by brute
force

brute2(D)
{

bruteRec(∅, 0,D)
}

bruteRec(X, i, D)
{

if i < |V (D)|
{

if X ∪ {i + 1} is valid
{

store X ∪ {i + 1}
}
bruteRec(X ∪ {i + 1}, i + 1,D)
bruteRec(X, i + 1,D)

}
}

in the search tree will be convex, and the search tree rooted at that vertex

can be pruned. Such pruning allows exhaustive to avoid performing a large

proportion of the unnecessary computations that a brute force algorithm would

have to.

4.2.1 I/O constraints

Algorithm 4 shows the exhaustive algorithm with I/O constraints.

If the vertices are examined in reverse topological order, then vertices that

are currently outputs of the set X will always be outputs of the set X because

no vertices can be added below them. Then if at any point there are too many

output vertices, the recursive branch can be pruned.

The exhaustive algorithm for restricting by input constraint is less efficient

than the output restriction. In [API03], there was a simple input check for each

convex vertex set before it was stored. However, when the method was revised

in [PAI06] an improved input checking algorithm was proposed that was able
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Example 10: Motivational example for the exhaustive algorithm

Algorithm 3 exhaustive(D): enumerating convex vertex sets, by pruning with
regard to convexity

exhaustive(D)
{

exhaustiveRecursive(∅, 0,D)
}

exhaustiveRecursion(X, i, D)
{

if i < |V (D)|
{

if X ∪ {i + 1} is convex
{

store X ∪ {i + 1}
exhaustiveRecursion(X ∪ {i + 1}, i + 1,D)

}
exhaustiveRecursion(X, i + 1,D)

}
}
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to cull more of the unnecessary branches. The improved algorithm maintainsa

list of those input vertices that could never be added to the current selection,

either because they were forbidden vertices or because the vertex had already

been considered for inclusion by a recursive ancestor. If there were more of

these permanent inputs than allowed by the input constraint, then the recursive

branch could be pruned.

Algorithm 4 exhaustiveIO(D): enumerating convex vertex by pruning with
regard to convexity and I/O constraints

exhaustiveIO(D)
{

exhaustiveIORecursion(∅, |V (D)|,D)
}

exhaustiveIORecursion(X, i, D)
{

if i > 0
{

if (X ∪ {i− 1} is convex) & (|OUT (X,D)| ≤ outConstraint)
&(externalInputs ≤ inConstraint)
{

if (|IN(X,D)| ≤ inConstraint)
{

store X ∪ {i− 1}
}
exhaustiveIORecursion(X ∪ {i− 1}, i − 1,D)

}
exhaustiveIORecursion(X, i − 1,D)

}
}

4.2.2 Connectivity constraint

The exhaustive algorithm was not originally intended to limit its search to

only connected convex vertex sets. However, because it is a simple and efficient

algorithm, it is an excellent benchmark for other methods of generating con-

nected convex vertex sets when it has been modified to only identify connected

convex vertex sets. This modification to the exhaustive algorithm is shown in
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Input Vertices |Sc| exhaustiveCon() exhaustiveCon()

time sets per second

bf2 32 4,136 0.43 9,618

bitcnts3 48 1,500 0.08 18,750

cjpeg3 29 105 0.02 5,250

qsort2 33 88 0.31 283

Table 4.1 Efficiency of the exhaustive algorithm when enumerating connected
convex vertex sets

Algorithm 5.

Each convex vertex set, X, identified by the algorithm is tested for connec-

tivity before it is stored. There are three possible results for the test. If the test

finds that there are disconnected parts of X that can never be joined because

the necessary vertices have already been removed from consideration, then the

convex vertex set is discarded and no consequent recursive calls are made. If

the test finds that there are disconnected parts of X that may be joined by

a vertex, or set of vertices topologically earlier in the DAG, then the convex

vertex set is discarded but the tree branch is not pruned so recursive search

continues. Lastly, if the test shows that X is connected, then X is output.

The algorithm is effective and simple to implement but the overheads in-

volved in testing for connectivity prevent the exhaustive algorithm from being

competitive under a connectivity constraint, so it is not used in the performance

tests in later chapters. Tables 4.1 and 4.2 show the reduction in efficiency of the

exhaustive algorithm when enumerating only connected convex vertex sets1.

4.3 The split algorithm

The split algorithm presented in [CMS07] and shown in Algorithm 6 is a re-

cursive algorithm that uses a grading method to identify the vertex which will

allow it to explore the search space with the least computational overhead.

1The conditions for this and all experiments in this thesis are detailed in Appendix A and
the examples are from the RHUL dataset specified in Appendix B.
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Algorithm 5 exhaustiveCon(D): enumerating connected convex vertex sets
by pruning with regard to convexity and connectivity

exhaustiveCon(D)
{

exhaustiveConRecursion(∅, 0,D)
}
exhaustiveConRecursion(X, i, D)
{

if i < |V (D)|
{

if X ∪ {i + 1} is convex
{

if connected(X ∪ {i + 1},D)
{

store X ∪ {i + 1}
exhaustiveConRecursion(X ∪ {i + 1}, i + 1,D)

}
else if canBeMadeConnected(X ∪ {i + 1},D)
{

exhaustiveConRecursion(X ∪ {i + 1}, i + 1,D)
}

}
exhaustiveConRecursion(X, i + 1,D)

}
}

Input Vertices |S| exhaustive() exhaustive()

time sets per second

bf2 32 43,442 0.32 135,756

bitcnts3 48 5,479 0.06 91,316

cjpeg3 29 4,255 0.01 425,500

qsort2 33 60,415 0.20 302,075

Table 4.2 Efficiency of the exhaustive algorithm when enumerating all convex
vertex sets
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The estimated computation for adding a vertex u to the selection X is given

by estimate(u,X) in Algorithm 8. The vertex with lowest value of estimate() is

chosen and added to the selection. A number of heuristics may be employed to

remove some vertices from consideration and to direct the search in such a way

that involves the minimum amount of testing for input and output constraints.

If there are no possible candidates, then the selection X is saved as a solution

and the recursive call terminates.

When a vertex, v say, is chosen, two recursive calls (Algorithm 6(a) and

(b)) are made in which v is made a forbidden vertex. In one of these calls

(Algorithm 6(a)) all vertices that have a path to v are made forbidden vertices,

and in the other call (Algorithm 6(b)) all vertices that have a path from v are

made forbidden vertices. This operation is safe because if a vertex set contains

a vertex with a path to v, a vertex with a path from v, and does not contain

v, then it is not convex. If either of (Algorithm 6(a) and (b)) would cause a

member of X to be made forbidden then that recursive call would not be made.

Finally, v is added to the selection X, along with all vertices necessary to

satisfy convexity (Algorithm 6(c)) and a recursive call is made with this new

version of X Algorithm 6(d).

4.3.1 Modification to enumerate connected convex vertex

sets

Algorithm 7 shows a version of the split algorithm that is restricted to only

enumerating connected convex vertex sets. This is achieved by only choosing

vertices in dom(X,D) ∪ domBy(X,D) to add to the convex vertex set being

constructed (Algorithm 7(b)). Moreover as the recursive calls Algorithm 6(a)

and (b) cannot both be applicable when enumerating connected convex vertex

sets we use an if cause to only use one(Algorithm 7(a)).
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Algorithm 6 split(D): enumerating convex sets by recursive construction

split(D)
{
∀a ∈ V (D)(in topological order)
{

splitRecursive({a}, F (D),D)
delete a from D

}
}

splitRecursive(X,F,D)
{

if X ∪ F = V (D)
{

store X
return

}
v ← chooseV (X,F,D)
if v 6∈ domBy(X,D)

(a) splitRecursive(X,F ∪ dom(v,D),D)
if v 6∈ dom(X,D)

(b) splitRecursive(X,F ∪ domBy(v,D),D)
X ← X ∪ {v}

(c) X ← X ∪ (dom(X,D) ∩ domBy(X,D))
(d) splitRecursive(X,F,D)

}

chooseV (X,F,D)
{

return v such that v ∈ V (D) \ F , and estimate(v,X,D) is minimum.
}



The split algorithm 68

Algorithm 7 splitCon(D): enumeration of connected convex sets by recursive
construction

splitConRecursive(X,F,D)
{

if (dom(X,D) \ F ) ∪ (domBy(X,D) \ F ) = ∅
{

store X
return

}
v ← chooseConV (X,F,D)

(a) if v ∈ dom(X,D)
splitConRecursive(X,F ∪ dom(v,D),D)

else
splitConRecursive(X,F ∪ domBy(v,D),D)

X ← X ∪ {v}
X ← X ∪ (dom(X,D) ∩ domBy(X,D))
splitConRecursive(X,F,D)

}

chooseV Con(X,F,D)
{

(b) return v such that v ∈ (dom(X,D) ∪ domBy(X,D)) \ F ,
and estimate(v,X,D) is minimum.

}
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Algorithm 8 estimate(u,X,D): estimating the number of I/O checks per-
formed by split if u is added to X

estimate(u,X,D)
{

if u ∈ dom(X,D)
{

Let s← |dom(X,D) ∩ domBy(u,D)|
Let p← |dom(u,D)|

}
else if u ∈ domBy(X,D)
{

Let p← |domBy(X,D) ∩ dom(u,D)|
Let s← |domBy(u,D)|

}
else
{

Let p← |dom(u,D)|
Let s← |domBy(u,D)|

}
return grade1(p, s)

}
grade1(p, s)
{
\\we require 0 ≤ p, s < 216

Let a← max(p, s)
Let b← min(p, s)
if b = 0
{

return 0
}
return(b << 16) + a

}
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4.3.2 Summary

Results shown in [CMS07] and confirmed in Chapters 5 and 6 show that the

split algorithm is the fastest previously published approach for enumerating

convex sets under a variety of constraints. Furthermore, it can efficiently enu-

merate convex vertex sets without regard to I/O constraints. In Chapters 5

and 6 we present new algorithms that perform faster than the split algorithm

on a variety of examples.

4.4 The poly enum algorithm

The poly enum approach, presented in [BP07], has polynomial time complex-

ity in the size of the I/O constraints, and is the first algorithm for enumeration

of convex vertex sets with such a bound. It makes use of generalised dominators

(introduced in [Gup92]) to enumerate the sets. However, this use of generalised

dominators enforces an extra constraint on the convex vertex sets that can be

enumerated and so the generated candidate library may be incomplete.

DEFINITION 15 In a rooted DAG2, a generalised dominator of a vertex set

Q is a set A such that each path from the source vertex to Q passes through a

vertex in A, and for each vertex in a ∈ A there is a path from the source vertex

to Q that contains only a and no other members of A.

4.4.1 Generalised dominators and input sets

The insight made by the authors of [BP07] is that if A is a generalised dominator

of B in D, then there is a convex vertex set S in D with IN(S,D) = A and

B ⊆ OUT (S,D).

Example 11 shows this relationship between input sets and generalised dom-

inators. For this DAG consider F = {0, 1, 2, 10}. Table 4.3 and Table 4.4 show

2If necessary any of our target DAGs can be made rooted by creating an additional for-
bidden vertex (the source) and connecting it to each vertex that has no dominators.
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a clear correspondence between generalised dominators and inputs of convex

vertex sets for the convex vertex sets with OUT () = {8, 9}.
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Example 11: BP07 Example

Convex Input
sets sets

{8,9} {5,6,7}
{5,8,9} {4,6,7}
{4,5,8,9} {0,6,7}
{6,8,9} {5,1,7}
{5,6,8,9} {4,1,7}
{4,5,6,8,9} {0,1,7}
{7,8,9} {5,6,2}
{5,7,8,9} {4,6,2}
{4,5,8,9} {0,6,2}
{6,7,8,9} {5,1,2}
{5,6,7,8,9} {4,1,2}
{4,5,6,7,8,9} {0,1,2}

Table 4.3 Convex and input sets for
Example 11 with {8, 9} as outputs

Generalised
dominators

{5,6,7}
{4,6,7}
{0,6,7}
{5,1,7}
{4,1,7}
{0,1,7}
{5,6,2}
{4,6,2}
{0,6,2}
{5,1,2}
{4,1,2}
{0,1,2}

Table 4.4 Generalised dominators
of the set {8, 9} in Example 11

Recall from Lemma 4 that, given an input set Vin and output set Vout,

there is at most one convex vertex set C with IN(C) = Vin and OUT (C) =

Vout in a DAG D. The algorithm presented in [BP07] attempts to enumerate

convex vertex sets by pairing output sets with their generalised dominators.

The generalised dominators are generated using a known polynomial algorithm

from [DTM04]. For each pairing the poly enum algorithm deduces the possible

convex vertex set, and if it is suitable (it may be that such a set has extra
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outputs or contains a forbidden vertex) stores it.

This approach has polynomial time complexity because the generalised dom-

inators of a vertex set can be found in polynomial time and there can only be

a polynomial number of such pairings. A high-level outline of this algorithm is

shown in Algorithm 9.

Algorithm 9 poly enum(D): enumerating convex sets by finding generalised
dominators of output sets

poly enum(D)
{

poly enumRecursive(∅, ∅, ∅,D)
}

poly enumRecursive(I,Q, S,D)
{
∀o ∈ V (D)|{o} ∪Q is a valid output vertex set
{

Let newQ← Q ∪ {o}
Let G ← the set of generalised dominators of o
∀G ∈ Gsuch that |G ∪ I| ≤ inConstraint
{

Let newS ← S ∪ (dom({o},D) ∩ domBy(G,D))
if OUT (newS,D) = newQ
{

store newS
}
if |newQ| < outConstraint
{

poly enumRecursive(G ∪ I, newQ,newS,D)
}

}
}

}

4.4.2 Missing convex vertex sets

Although we have shown that if A is a generalised dominator of B in D, then

there is a convex vertex set S in D with IN(S,D) = A and B ⊆ OUT (S,D),
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the converse is not true.
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Example 12: An instance where BP07 will miss a convex vertex set

Consider the convex vertex set {3} in Example 4.4.2. OUT ({3}) = {3} and

IN({3}) = {1, 2}. However, {1, 2} is not a generalised dominator of OUT ({3})

and so poly enum will not find the convex vertex set {3} in this example.

It is noted in [BP07] that the algorithm does not find all convex vertex sets

and a constraint is offered such that the poly enum algorithm will find all

convex vertex sets that satisfy the constraint:

‘. . . we add another condition for the validity of the convex cut.

For each input w ∈ I(S), there is a vertex v ∈ S, such that at least

one path from the root of G to vertex v contains w but not any

other input of S. This condition excludes from consideration a few

valid cuts, namely those where an input w only has other inputs as

predecessors. . . ’.

Although the poly enum algorithm will find all sets subject to this extra

constraint, the convex vertex sets that are excluded are not limited to those

that have other inputs as predecessors. We refer to this condition as condition

1.

Table 4.5 shows the number of convex vertex sets that poly enum finds in

comparison with both the total number of convex vertex sets and the number of

convex vertex sets that satisfy ‘condition 1’. These tests compare the number

of convex vertex sets that match the various conditions for test cases in the

RHUL dataset.
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Input Vertices In Out Convex Condition BP07
(forbidden) Sets 1

tree 36(19)
3 2 146 142 117
4 3 752 711 470
5 4 2,741 2,510 1,256

lattice 28(8)
3 2 147 141 117
4 3 685 645 472
5 4 2,449 2,287 1,367

bitcnts2+ 74(23)
3 2 3,428 3,428 2,835
4 3 63,611 63,611 40,413

bf1+ 29(17)
3 2 93 90 89
4 3 296 274 267
5 4 623 543 524

fft2+ 72(39)
3 2 1,081 1,078 1,047
4 3 12,870 11,532 11,435

gsm1+ 37(19)
3 2 228 228 218
4 3 754 754 694
5 4 1684 1684 1587

patricia2+ 66(26)
3 2 1,294 956 705
4 3 13,662 7,403 5,369

Table 4.5 Total convex vertex sets found by the BP07 Algorithm

There is a substantial variation in the effectiveness of the poly enum al-

gorithm when run on different test cases. With some test cases it will find

all of the convex vertex sets, and with others it will find fewer than half the

sets. Furthermore, there is often a significant difference between ‘condition 1’

and the total number of convex vertex sets that are found by the poly enum

algorithms.

4.4.3 Summary

The poly enum algorithm, although theoretically interesting, is neither fully

exhaustive nor consistent enough for industrial implementation. In Chapter 6,

several polynomial-time algorithms are presented, which are not only fully ex-

haustive, but also have lower polynomial time complexity.
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4.5 PKP08

A paper by Pothineni, Kumar, and Paul [PKP08] describes an algorithm that

is almost identical to the exhaustive algorithm.

The PKP08 algorithm works in a very similar way to the exhaustive algo-

rithm discussed in section 4.2, but instead of making two recursive calls at every

stage, PKP08 makes a recursive call for every remaining vertex. A version of

the PKP08 algorithm is shown in Algorithm 10. PKP08 can use virtually the

same methods for pruning the search graph for convexity and I/O constraints

as exhaustive.

The experimental evidence provided in [PKP08] shows PKP08 being only

practical on very small input graphs and does not compare results with ap-

proaches like the split algorithm. We shall not consider this method further.

Algorithm 10 PKP08(X, i,D): enumerating convex vertex sets by pruning
with regard to convexity

PKP08recursive(D)
{

PKP08(∅, 0,D)
}

PKP08recursive(X, i,D)
{
∀j, vj ∈ V (D), j > i,X ∪ {vj} is convex
{

store X ∪ {k}
PKP08recursive(X ∪ {vj}, j,D)

}
}

4.6 Using cones to enumerate convex vertex sets

Several algorithms [YM04, YM08, GPY+06] make use of cones in the DAG.

DEFINITION 16 A convex connected vertex set Dupcone of D is an upward

cone of a vertex u ∈ Dupcone if for all n ∈ Dupcone there is a path from n to u.
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A convex connected vertex set Ddowncone of D is a downward cone of a vertex

u ∈ Ddowncone if for all n ∈ Ddowncone there is a path from u to n.

These cones can be used on their own or combined to reveal convex vertex

sets within a DAG. This section introduces cones and shows how they may

be generated. The following section gives an overview of the MISO algorithm,

which was the earliest use of these cones. Cones feature significantly in the

union algorithm, which is discussed in detail in Chapter 7.

We note that all single output, connected convex vertex sets are upward

cones, but the converse is not necessarily true. In Example 14 the set {2, 3, 5}

is both a cone and a single output connected convex vertex set. However, the

set {1, 2, 3, 5} is a cone with OUT ({1, 2,3, 5}) = {1, 5}.

4.6.1 Finding and labelling cones

The algorithm addCones(D,F ), shown in Algorithm 11, takes a DAG and labels

each vertex with its upward cones, using the stub function addUpwardSets(i,A)

where i is a vertex in the graph and A is a set of vertex sets to be associated

with i. A similar algorithm can be used to label each vertex with its downward

cones. When applied to tree shaped input, the cone finding algorithm will find

each cone exactly once. Although it is broadly efficient for other input, the

cone finding algorithm may find the same cone several times.
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Example 13: A case where the cone labelling algorithm will find the same cone
multiple times

Example 13 shows that the labelling algorithm will attach cones {2},{2,

0} to 2 and {1},{1,0} to 1 . However, when these two groups of cones are

combined to create the cones for 4 , the cone {4, 2, 1, 0} will be located three
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times: once by combining {2} with {1, 0}; once by combining {2, 0} with {1};

and once by combining {2, 0} with {1, 0}.
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Example 14: The difference between a cone and a single output convex vertex
set

4.6.2 MISO

The earliest of the cone-based algorithms is MISO(Algorithm 12), standing for

Multiple Input-Single Output [PPIM03, Poz01]. The algorithm finds connected

convex vertex sets that have a single output vertex. If we can guarantee that the

input is a tree, then we can also guarantee that all convex vertex sets will have

a single output vertex and thus MISO is an exhaustive algorithm for tree-like

structures. In all other cases MISO must be classed as a heuristic algorithm.

A MISO-like algorithm appears in [CFHZ04]. One of the original intentions

of the method was to be able to extract the candidates called MaxiMISOs, which

would be the largest possible single output convex vertex sets in a given DAG.

The heuristic [GPY+06] examines the potential of combining these MaxiMISOs.

The MISO algorithm can be implemented by running the cone labelling al-

gorithm in Section 11 on a DAG, then discarding all those cones that have more

than one output (Algorithm 12). The sets that are output will be the single

output convex vertex sets of D. As a result, MISO is of limited applicability.
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Algorithm 11 addCones(D,F ): labelling vertices with their upward cones

addCones(D,F ))
{
∀i ∈ V (D) \ F
{

addUpwardSets(i, {{i}})
∀a ∈ V (D)|(a, i) ∈ E(D)
{
A = combinePatterns(returnPatternsUp(a), returnPatternsUp(i))
addUpwardSets(i,A)

}
}

combinePatterns(B, C)
{

Let R = ∅
∀B ∈ B
∀C ∈ C

if convex(B ∪ C)
{

add (B ∪C) to R
}

return R
}
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Algorithm 12 MISO(D,F ): enumerating convex vertex sets that have a
single output

MISO(D,F ))
{
∀i ∈ V (D) \ F
{

addUpwardSets(i, {{i}})
∀a ∈ V (D)|(a, i) ∈ E(D)
{
A = combineMISO(returnPatternsUp(a), returnPatternsUp(i))
addUpwardSets(i,A)

}
}

combineMISO(B, C)
{

Let R = ∅
∀B ∈ B
∀C ∈ C

if convex(B ∪ C)
{

add (B ∪C) to R
if OUT (B ∪ C) = 1
{

output B ∪ C
}

}
return R

}
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4.7 Summary

This chapter has surveyed algorithms for exhaustively enumerating convex ver-

tex sets. The significant algorithms in the area are the exhaustive and split

algorithms. The following two chapters present new algorithms for exhaustive

enumeration of convex vertex sets and demonstrate their superiority.



Chapter 5

Exhaustive search on a directed acyclic

graph

This chapter presents the Φ algorithm for enumerating all convex vertex sets,

and the Ψ algorithm for enumerating connected convex vertex sets. Modi-

fications to these algorithms that enable them to deal with constraints such

as forbidden vertices are also shown. Some elements of this work have been

published in [GJR+07] and extended in [GJR+08a].

The chapter concludes by presenting a two-stage process for enumerating

all convex vertex sets. This process uses the Ψ algorithm to create a ‘partial

solution’, and we compare several different ways of expanding this partial so-

lution. The performance of each algorithm is tested under a range of different

conditions and the results are compared to the performance of the split and

exhaustive algorithms reviewed in the previous chapter.

5.1 The Φ algorithm: all convex vertex sets

The input to the Φ algorithm is a DAG D, and it outputs all convex vertex sets

of D exactly once. We begin with an overview of the algorithm (Algorithm 13)

and an example of its use. This is followed by a discussion of the asymptotic

complexity of the algorithm.
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The core insight of the Φ algorithm is that if X is a convex vertex set of a

DAG D and x is either a source or a sink vertex of DX , then X \ {x} is also

convex. Then every convex vertex set can be reached by the removal of a series

of source or sink vertices from the original DAG. By controlling the removal

of source or sink vertices from a DAG D, the Φ algorithm can enumerate all

possible convex vertex sets of D.

Algorithm 13 Φ(D): enumerating convex vertex sets by removal of source and
sink vertices

Φ(D)
{

Φrec(V (D), V (D),D)
}

Φrec(X,Y,D)
{

store X
∀v ∈ (sink(X) ∩ Y ) ∪ (source(X) ∩ Y )
{

Y ← Y \ {v}
Φrec(X \ {v}, Y,D)

}
}

5.1.1 Overview

Algorithm 13 is a high-level description of the Φ algorithm. The recursive

function at the heart of the Φ algorithm, Φrec(X,Y,D), will find all convex

vertex sets S such that S ⊆ X, S ∩ Y 6= ∅.

In each call, the algorithm stores the current value of X and iterates over the

set of vertices that are either source or sink vertices of X, and are also members

of Y . For every vertex v in Y that is a member of either source(X) or sink(X),

a recursive call Φrec(X \{v}, Y ′,D) is made, where Y ′ ⊂ Y . This recursive call

will store all convex vertex sets S such that S ⊆ X \ {v}, S ∩ Y ′ 6= ∅. This also
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Index Set

1 {}
2 {3}
3 {2}
4 {1,3}
5 {1}
6 {0,1,2,3}
7 {0,1,3}
8 {0,1,2}
9 {0,1}

10 {0,2}
11 {0}
12 {1,2}
13 {2,3}
14 {1,2,3}

Table 5.1 Convex vertex sets obtained from Example 15

ensures that all convex sets found by further recursive calls of Φrec() contain v

and ensures that the same convex vertex set cannot be found more than once

by Φrec().

When there are no remaining vertices that are both in Y and are a source

or sink of X, the algorithm stores X and terminates.

5.1.2 Example

1

3
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2
	 ~

?

Example 15: DAG used for examples

Example 15 will be used for all the examples in this chapter. It generates

the convex vertex sets shown in Table 5.1.

The call graph produced by executing the Φ algorithm on Example 15 is

shown in Figure 5.1. When Φrec({0, 1, 2, 3}, {0, 1, 2, 3}) is called, it corresponds

to vertex (A) of the call graph.
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Figure 5.1 Recursive calls made by Φ on Example 15

Execution trace of Φrec()

We present an execution trace of Φrec() as it process the DDG in Example 15.

This trace corresponds to the call graph in Figure 5.1 and the nesting of recur-

sive calls is represented by indentation.

(A1) The convex vertex set {0, 1, 2, 3} is stored.

(A2) Vertices 0, 2, and 3 are suitable vertices for removal, 0 is chosen for removal

first and the recursive call Φrec({1, 2, 3}, {1, 2, 3}) is made.

(B1) The convex vertex set {1, 2, 3} is stored.

(B2) Vertices 1, 2, and 3 are suitable vertices for removal, 1 is chosen for removal first

and the recursive call Φrec({2, 3}, {2, 3}) is made.

(C1) The convex vertex set {2, 3} is stored.

(C2) Vertices 2 and 3 are suitable vertices for removal, 2 is chosen for removal

first and the recursive call Φrec({3}, {3}) is made.

(D1) The convex vertex set {3} is stored.

(D2) Vertex 3 is the only suitable vertex for removal and the recursive call

Φrec(∅, ∅) is made.

(E1) The convex vertex set {} is stored.
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(C3) Vertex 3 is chosen for removal and the recursive call Φrec({2}, ∅) is made.

(F1) The convex vertex set {2} is stored.

(B3) Vertex 2 is chosen for removal and the recursive call Φrec({1, 3}, {3}) is made.

(G1) The convex vertex set {1, 3} is stored.

(G2) Vertex 3 is the only suitable vertex for removal and the recursive call

Φrec({1}, ∅) is made.

(H1) The convex vertex set {1} is stored.

(B3) Vertex 3 is chosen for removal and the recursive call Φrec({1, 2}, ∅) is made.

(I1) The convex vertex set {1, 2} is stored.

(A3) Vertex 2 is chosen for removal and the recursive call Φrec({0, 1, 3}, {1, 3})

is made.

(J1) The convex vertex set {0, 1, 3} is stored.

(J2) Vertex 3 is the only suitable vertex for removal so we make the recursive call

Φrec({0, 1}, {1}).

(K1) The convex vertex set {0, 1} is stored.

(K2) Vertex 1 is the only suitable vertex for removal so we make the recursive

call Φrec({0}, ∅).

(L1) The convex vertex set {0} is stored.

(A4) Vertex 3 is chosen for removal and the recursive call Φrec({0, 1, 2}, {1})

is made.

(M1) The convex vertex set {0, 1, 2} is stored.

(M2) Vertex 1 is the only suitable vertex for removal so we make the recursive call

Φrec({0, 2}, ∅).

(N1) The convex vertex set {0, 2} is stored.
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5.1.3 Time complexity

The Φ algorithm has an overall time complexity of O(
∑

S∈S(D) |S|) (Lemma 6).

Algorithm 14 shows the Φ algorithm in greater detail. In particular, it shows

how the source and sink sets can be maintained by keeping count of the number

of in- and out-neighbours that each vertex has within X.

Lemma 6 Given a DAG D, which includes adjacency lists for each vertex, an

adjacency matrix, and the number of in-neighbours and out-neighbours for each

vertex1, the time complexity of Φ(D) is O(
∑

S∈S(D) |S|).

Proof Initialising the arrays in[] and out[] (Algorithm 14(a)) can be done in

O(|V (D)|2) time. Given the arrays in[] and out[], which are of size |V (D)|, the

sets sink and source can be initialised in O(|V (D)|) time. Thus the initialisa-

tion of the Φ algorithm requires O(|V (D)|2) time.

Each call of Φrec() stores exactly one convex vertex set. There can be only

S(D) calls because only convex vertex sets are stored, and each set is stored

only once. We must show that each call to Φrec(X,Y,D), without recursive

calls, has complexity O(|X|).

Φrec(X,Y,D) iterates over a linked list of source and sink nodes of (sink ∩

Y ) ⊆ X (Algorithm 14(b)), which is an O(|X|) operation. For each element v

in the set (source ∪ sink) \ Y , a call to Φrec() is made (Algorithm 14(c)).

The values of in[] or out[] for neighbours of v that are in X must be updated

before the call is made (Algorithm 14(d)). There are at most |X| − 1 such

neighbours so the operation requires O(|X|) time. However, the cost can then

be ‘charged’ to the recursive call that is about to be made. Updating the

number of out or in neighbours will also update the source or sink sets. The

process is reversed to restore the values of in or out as soon as the recursive

call terminates (Algorithm 14(e)).

1If the in- and out-neighbours are not given, then they can be computed in O(|V (D)|2)
time
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Algorithm 14 Φ(D): enumerating convex vertex sets by removal of source and
sink vertices (detailed view)

Φ(D)
{

(a) Let in[] be an array initialised such that in[i] = |{j|(j, i) ∈ E(D)}|
Let out[] be an array initialised such that out[i] = |{j|(i, j) ∈ E(D)}|
sink ← all vi ∈ V (D) such that out[i] = 0
source← all vi ∈ V (D) such that in[i] = 0
Φrec(V (D), V (D),D, source, sink, in[], out[])

}

Φrec(X,Y,D, source, sink, in, out)
{

store X
∀v ∈ (sink ∩ Y )
{
∀w ∈ X
{

if w is a direct predecessor of v
{

decrement out[w]
if out[w] = 0

sink = sink ∪ {w}
}

}
Y ← Y \ {v}
Φrec(X \ {v}, Y,D, source, sink, in, out)
restore values of out[] and sink to before the loop

}
(b) ∀v ∈ (source ∩ Y )

{
(d) ∀w ∈ X

{
if w is a direct sucessor of v
{

decrement in[w]
if in[w] = 0

source = source ∪ {w}
}

}
Y ← Y \ {v}

(c) Φrec(X \ {v}, Y,D, source, sink, in, out)
(e) restore values of in[] and source to before the loop

}
}
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Deleting and reinserting vertices requires constant time because we are not

concerned with the order of elements in the linked list, so Φrec(X,Y,D) has

complexity O(|X|).

In summary, we require O(|V (D)|2) time to initialise the algorithm and each

call of Φrec() requires O(|X|) time to store a convex set of size O(|X|).

Then the total running time is Ω(|V (D)|2)+ O(
∑

S∈S(D) |S|). By Lemma 3

O(
∑

S∈S(D) |S|) = Ω(|V (D)|2) so the overall running time of the Φ algorithm

is O(
∑

S∈S(D) |S|). ⋄

5.2 The Ψ algorithm: connected convex vertex sets

The Ψ algorithm (first presented in [GJR+07]) enumerates connected convex

vertex sets of a DAG. A high-level description is shown in Algorithm 15.

Whilst the Φ algorithm starts from a full DAG and shrinks the selection

down to find convex vertex sets, the Ψ algorithm starts from a single ‘seed’

vertex and grows the selection by adding vertices from the set Y .

The Ψ algorithm can ensure that the convex vertex set being grown is

always connected by ensuring that only vertices that dominate or are dominated

by X are chosen to extend by. However, there may be more vertices that

need to be added to satisfy convexity because the vertices being added are not

necessarily adjacent to the current selection—checking for these extra vertices

is an overhead that Φ avoids.

5.2.1 Overview

Ψrec({x}, V (D),D) will store all connected convex vertex sets in D, for which

{x} is a member. All convex vertex sets for D can be enumerated by executing

Ψrec({x}, V (D),D) and then deleting vertex {x} from D and repeating the

process.

If x were on a path between two other vertices in D, then the next recursive
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Algorithm 15 Ψ(D): enumerating connected convex vertex sets, by selection
and rejection of vertices

Ψ(D)
{
∀a ∈ V (D)(in topological order)
{

Ψrec({a}, V \ {a},D)
delete a from D

}
}

Ψrec(X,Y,D)
{

if (dom(X,D) ∩ Y ) ∪ (domBy(X,D) ∩ Y ) = ∅
{

store X
return

}
v ← chooseV (X,Y,D)
Ψrec(X,Y \ {v},D)
X ← X ∪ {v}
X ← X ∪ (dom(X,D) ∩ domBy(X,D))
Ψrec(X,Y \X,D)

}

chooseV (X,Y,D)
{

if (domBy(X,D) ∩ Y ) 6= ∅
{

find the vertex vi ∈ (domBy(X,D) ∩ Y ) with maximum i.
}
else
{

find the vertex vi ∈ (dom(X,D) ∩ Y ) with minimum i.
}
return vi

}
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Index X

1 {3}
2 {2}
3 {1,3}
4 {1}
5 {0,1,2,3}
6 {0,1,3}
7 {0,1,2}
8 {0,1}
9 {0,2}
10 {0}

Table 5.2 Connected convex vertex sets obtained from Example 15

call may generate some vertex sets that are not convex in D. To prevent this,

vertices are removed from D in topological order.

A significant difference between Φrec and Ψrec is that when Ψrec makes an

addition to the X set it may need to add more vertices to X to maintain convex-

ity. The operations X ← X ∪ {v} and X ← X ∪ (dom(X,D) ∩ domBy(X,D))

in Algorithm 15 perform this function for the Ψ algorithms.

v must be a vertex that is not in the current X set and which has not yet

been removed from Y . Furthermore, it must either dominate or be dominated

by members of X. In the implementation used for the experiments later in this

chapter, the topologically first vertex in dom(X,D)∩Y is chosen for preference,

followed by the topologically last vertex in domBy(X,D)∩Y , this ensures that

Ψrec does not need to make any extra vertices forbidden when rejecting v from

the selection.

5.2.2 Example

Example 15 is used to show the operation of the Ψ algorithm. It generates the

connected convex vertex sets shown in Table 5.2 in the order in which they are

shown.

When processing the DAG shown in Example 15, the Ψ algorithm will call
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the recursive function Ψrec() once for each of the vertices in the graph. These

calls correspond to the four call graphs in Figure 5.2.

Firstly, Ψrec() is called with X = {0}, Y = {1, 2, 3} corresponding to

vertex (A) of the call graph. Once this call has successfully terminated, Ψrec()

is called with: X = {1}, Y = {2, 3}; X = {2}, Y = {3}; X = {3}, Y = {},

which correspond to the call graph vertices (L), (O), and (P ) respectively.

Execution trace of Ψrec

(A) Vertices 2 and 3 would both be suitable v vertices, 3 is chosen because it is topologically

later. The v vertex is removed from Y and a recursive call (E) is made. v is added to

X and because vertex 1 is on a path between 3 and X 1 is added to X and a second

recursive call is made to (B).

(B) Vertex 2 is the only suitable v vertex, so it is removed from Y and a recursive call is

made (D), v is then added to X and a second recursive call is made (C).

(C) There is no suitable v vertex so the set {0, 1, 2, 3} is stored.

(D) There is no suitable v vertex so the set {0, 1, 3} is stored.

(E) Vertices 1 and 2 would both be suitable v vertices, 2 is chosen because it is topologically

later. v is removed from Y and a recursive call (I) is made. v is added to X and a

second recursive call is made to (F ).

(F) Vertex 1 is the only suitable v vertex, so it is removed from Y and a recursive call is

made (H), v is then added to X and a second recursive call is made (G).

(G) There is no suitable v vertex so the set {0, 1, 2} is stored

(H) There is no suitable v vertex so the set {0, 2} is stored

(I) Vertex 1 is the only suitable v vertex, so it is removed from Y and a recursive call is

made (K), v is then added to X and a second recursive call is made (J).

(J) There is no suitable v vertex so the set {0, 1} is stored.

(K) There is no suitable v vertex so the set {0} is stored

(L) Vertex 3 is the only suitable v vertex, so it is removed from Y and a recursive call is

made (N), v is then added to X and a second recursive call is made (M).
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Figure 5.2 Recursive calls made by Ψ on Example 15

(M) There is no suitable v vertex so the set {1, 3} is stored

(N) There is no suitable v vertex so the set {1} is stored

(O) There is no suitable v vertex so the set {2} is stored

(P) There is no suitable v vertex so the set {3} is stored

5.2.3 Comparisons with the split algorithm

The Ψ algorithm and split [CMS07] have a number of algorithmic similarities,

even though they were developed independently. Both algorithms grow a convex

vertex set from a single ‘seed’ vertex and, where necessary, add vertices to the

set to maintain convexity. The major difference is that the Ψ algorithm makes

use of the first extension point found, whereas split finds all possible extension

vertices and ranks them in order to decide which would be the best vertex to

use as an extension point.

5.2.4 Time complexity

The time complexity of the Ψ algorithm is O(|V (D)| · |Sc(D)|) (Lemma 7).

Lemma 7 The time complexity of the Ψ algorithm is O(|V (D)| · |Sc(D)|).



The Ψ algorithm: connected convex vertex sets 93

Proof By Lemma 8 a reachability matrix can be computed in O(|V (D|) ·

|Sc(D)|) time.

Consider the recursive function Ψrec(X,Y,D), which, with appropriate data

structures and a pre-computed reachability matrix, has a worst-case complexity

of O(|Y |), Y ⊆ V (D). Then Ψrec(X,Y,D) is of order O(|V (D)|).

Consider that the recursive calls made by Ψrec(X,Y,D) form a forest of

binary trees. Each leaf vertex in this forest will store exactly one connected

convex vertex set. Thus there must be exactly Sc(D) leaf vertices and the

total number of vertices (and hence calls to the function Ψrec(X,Y,D)) in the

recursive trees must be of O(|Sc(D)|). Because the total number of calls of

the recursive function is at most O(|Sc(D)|), and each call has a complexity of

O(|V (D)|), then the worst case order of the algorithm is O(|V (D)| · |Sc(D)|).⋄

Lemma 8 A reachability matrix for a DAG D can be found in O(|V (D)| ·

|Sc(D)|) time.

Proof Pre-computing a reachability matrix for a DAG is equivalent to com-

puting the transitive closure which requires O(|V (D)|3) time [BJG00].

By Lemma 3 in Chapter 3, |Sc(D)| is of minimum order O(|V (D)|2). Then

|V (D)| · |Sc(D)| is of minimum order O(|V (D)|3). Then a path table for DAG

D can be precomputed in O(|V (D)| · |Sc(D)|) time. ⋄

5.2.5 Using Ψ to enumerate all convex vertex sets

It is not hard to modify the Ψ algorithm such that the new algorithm will

generate all convex vertex sets of a DAG D in time O(|V (D)|·|S(D)|), including

non-connected sets. The Ψ algorithm will generate all convex vertex sets if we

replace chooseV (X,Y,D) with the one shown in Algorithm 16 and relax the

constraint for terminating the recursion. The version of the Φ algorithm that

includes this modification is referred to as the Ψallsets algorithm.
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Algorithm 16 Ψallsets: enumerating all convex vertex sets

Ψallsets(D)
{
∀a ∈ V (D)(in topological order)
{

Ψallsetsrec({a}, V \ {a},D)
delete a from D

}
}

Ψallsetsrec(X,Y,D)
{

if Y = ∅
{

store X
return

}
v ← chooseVallsets(X,Y,D)
Ψallsetsrec(X,Y \ {v},D)
X ← X ∪ {v}
X ← X ∪ (dom(X,D) ∩ domBy(X,D))
Ψallsetsrec(X,Y \X,D)

}

chooseVallsets(X,Y,D)
{

return any v ∈ (source(Y ) ∩ sink(Y )) \X
}
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There is some overhead involved in maintaining the convexity of X at each

recursive call because the Ψallsets algorithm adds vertices to a convex vertex set

being constructed rather than taking them away from a larger set. Section 5.6.1

shows that the relative speed of the two algorithms reflect this overhead. More-

over, the Ψallsets algorithm is asymptotically inferior to the Φ algorithm as

shown by Lemmas 7 and 6.

5.3 Adding I/O constraints to the Φ and Ψ algorithms

It is simple to modify both the Φ and Ψ algorithms in such a way that they

will store only those convex vertex sets that are valid under I/O constraints.

However, faster algorithms for enumeration of convex vertex sets under I/O

constraints are presented in Chapter 6.

5.4 Forbidden vertices

In Chapter 2 we noted that convex vertex sets are invalid if they contain vertices

that represent forbidden operations. If there is a large number of such oper-

ations, then they can make a considerable difference to the overall efficiency

of the algorithms. In this section, modifications to the Φ and Ψ algorithms

are presented that enable them to efficiently process input DAGs that contain

forbidden vertices.

We must distinguish between internal and external forbidden vertices. A

vertex f ∈ F (D) is an internal forbidden vertex if there is at least one edge

(a, f) and one edge (f, b) in E(D) for some a, b ∈ V (D). All other vertices in

F (D) are denoted external forbidden vertices.

5.4.1 External forbidden vertices

If all of the forbidden vertices within the target DAG are external forbidden

vertices, then simple changes can be made to both Φ and Ψ to incorporate this
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restriction.

The calling functions of both algorithms can be modified by the introduction

of a set U that contains only vertices that have not been forbidden. The Ψ

algorithm uses U , instead of V (D), as the set of possible vertices to extend

by. The Φ algorithm uses U as the initial set of vertices before any have been

removed. The alterations to the calling functions of both these algorithms are

shown in Algorithm 17.

Algorithm 17 Calling functions for the Φ and Ψ algorithms with support for
forbidden vertices

Φ(D)
{

Let U ← V (D) \ F (D)
Φrec(U,U,D)

}

Ψ(D)
{

Let U ← V (D) \ F (D)
∀a ∈ U
{

Ψrec({a}, U \ {a},D)
delete a from V (D) and U

}
}

5.4.2 Internal forbidden vertices

The Φ algorithm is modified by adding a forbidden vertex check before each

convex vertex set is stored. This approach is not efficient and it will cause

significant delays if there is a high proportion of forbidden vertices in the DAG.

Algorithm 18 shows further modifications to the Ψ algorithm to incorpo-

rate this restriction. In addition to the changes discussed in Section 5.4.1, the

chooseV () function is altered so that v may not be a forbidden vertex. Fur-

thermore, Ψrec() is altered so that if the inclusion of an extension point causes

a forbidden vertex to enter X, then no recursive call is made with that value of
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X. Lastly, the condition for making recursive calls in Ψrec() is changed so that

if the only possible choices for v are forbidden, then X is stored as a connected

convex vertex set and no recursive calls are made.

5.5 Partial solutions using the Ψ algorithm

A partial solution is an intermediate stage in the process of enumerating all

convex vertex sets in D. We show how a partial solution can be constructed and

propose several different methods of expanding the partial solution to enumerate

all convex vertex sets of D.

DEFINITION 17 Given A ⊆ V (D) for some DAG D, let ai be the topologi-

cally last vertex in A. Let Vi be the set of vertices ai+1, . . . , a|V (D)|.

The augmentation of A is the set B = Vi \ (dom(A,D)∪ domBy(A,D). By

Lemma 9 B is convex in D.

The partial solution, ρ, of D is a set of pairs (A,B), such that A ∈ Sc(D),

B is the argumentation of A, and |ρ| = |Sc(D)|.

Lemma 9 Given a DAG D, let A ⊆ V (D). If B ⊆ V (D) is the augmentation

of A, then B is convex.

Proof Suppose for contradiction that B is not convex, then there is a path

P = p1, . . . , v, . . . pk such that p1, pk ∈ B and v 6∈ B.

Because v 6∈ B, then there is a path Q, which is either a v − A path or a

A− v path.

In the former case, there is also a p1−A path, which contradicts that p0 ∈ B

and in the latter case there is a A − pk path, which contradicts that pk ∈ B.

Then we have a contradiction, as required. ⋄

Lemma 10 Given a DAG D, let A be in Sc(D) and let B be the augmentation

of A. If C ∈ S(DB), then (A ∪C) ∈ S(D).
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Algorithm 18 Ψ(D): enumerating connected convex vertex sets with support
for internal and external forbidden vertices

Ψ(D)
{

Let U ← V (D) \ F (D)
∀a ∈ U
{

Ψrec({a}, U \ {a}, F (D))
delete a from V (D) and U

}
}

Ψrec(X,Y, F )
{

if ((dom(X,D) ∩ Y ) ∪ (domBy(X,D) ∩ Y )) \ F = ∅
{

store X
return

}
v ← chooseV (X,Y, F )
Ψrec(X,Y \ {v}, F )
X ← X ∪ {v}
X ← X ∪ (dom(X,D) ∩ domBy(X,D))
if X ∩ F 6= ∅

Ψrec(X,Y \X,F )
}

chooseV (X,Y, F )
{

if ((domBy(X,D) ∩ Y ) \ F ) 6= ∅
{

return vi ∈ (domBy(X,D) ∩ Y ) \ F with maximum i.
}
else
{

return vi ∈ (dom(X,D) ∩ Y ) \ F with minimum i.
}

}
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Proof C is convex in D because any path in DB is a path in D. Suppose for

contradiction that (A ∪C) is not convex in D and that there is a path P from

A ∪ C to A ∪ C that contains a vertex v in V (D) \ (A ∪ C). Because both A

and C are convex in D, P must be either from A to C, or C to A. Then this

is a contradiction by Definition 17 because C ⊆ B and B is the augmentation

of A. ⋄

Lemma 11 Given a DAG D, let X be in S(D) \ Sc(D). If ρ is the partial

solution of D, then there is precisely one A and C such that (A,B) ∈ ρ, C ∈

S(DB), A ∪ C = X.

Proof Let x be the topologically last vertex in X. Let X1 be the connected

component of X such that x ∈ X1. Because X1 is a convex connected vertex

set, there is precisely one (A,B) ∈ ρ such that A = X1.

Let X2 be X \X1. X2 is clearly convex because there are no X1−X2 paths

by convexity of X. We now show that X2 ⊆ B. All elements in X2 have no

path to X1 or from X1. Moreover, no element of X2 is topologically later than

x. Then all elements of X2 are in B and X2 ∈ S(DB). Then there exists an

A,C such that A ∪ C = X for all X.

For contradiction, we now assume that there is also A′, C ′ such that

(A′, B′) ∈ ρ,C ′ ∈ S(DB′), A′ ∪ C ′ = X,A′ 6= A,B′ 6= B.

By definition of an augmentation, A′ must contain x because B′ may not

contain a vertex that is topologically later than any in A′. Then A′ = X1 and

we have a contradiction as required. ⋄

By Lemmas 11 and 10, the set S(D) can be constructed from the partial

solution of D, by considering the convex vertex sets in the augmentation of the

elements of Sc(D).
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Index X Y

1 {3} ∅
2 {2} {3}
3 {1,3} {2}
4 {1} {2}
5 {0,1,2,3} ∅
6 {0,1,3} ∅
7 {0,1,2} ∅
8 {0,1} ∅
9 {0,2} ∅
10 {0} ∅

Table 5.3 Partial solution for Example 15

5.5.1 Algorithms incorporating a partial solution

Algorithms based on partial solutions enable the user of an associated CAD

tool to direct the search efficiently, save storage space and fine-tune the con-

straints placed on valid convex sets when more information is available about

the generated instruction set.

Direction of search

A partial solution to enumerating all convex vertex sets would allow a user of

an associated CAD tool the opportunity to control the enumeration process.

By directing the algorithm to only explore certain parts of the partial solution,

the user could concentrate the efforts of the toolchain on areas of the DAG that

are likely to yield beneficial candidate instructions.

In this way the algorithm could work in tandem with a user, and take

advantage of their knowledge of likely useful candidate instructions. If used

in this way then our algorithm becomes a heuristic approach for candidate

generation; however, the advantages in terms of the use of human intelligence

and reduction of search space may well compensate for the possibility of missing

a global optimal. Investigations into the effectiveness of this process compared

to other heuristic methods are beyond the scope of this work and the possibilities
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for this approach are discussed further in Chapter 8.

Storage

It can be noted that the number of connected convex vertex sets in D is much

smaller than the total number of convex vertex sets (see Table 5.4 for some

examples). This difference in size of solutions means that a partial solution will

almost inevitably use less storage space than a fully enumerated set of candidate

instructions. Efficient storage of candidate instructions can be of the utmost

importance because a complete candidate instruction library may well contain

millions of instructions. The only occasions that a partial solution will not use

less storage space are extreme cases when the total number of connected convex

vertex sets is close to the total number of convex vertex sets. However, this is

only likely to occur when the DAG contains a Hamilton path.

Flexible restrictions

The intermediate stage allowed by a partial solution can allow a more dynamic

flow of information between the stages of the instruction set customisation

toolchain. For example, an instruction selection method may be only able to

consider a limited set of 10,000 candidate instructions. This flexibility makes it

simple to efficiently deliver, for example, all of the connected convex vertex sets

and then a selection of the disconnected ones. Furthermore, it is also simple to

deliver all convex vertex sets that consist of n connected components. This flex-

ibility of a partial solution may be useful for particularly esoteric architectures

or unusual situations.

5.5.2 Creating a partial solution

A partial solution for D can be generated from the set Sc(D) with a small

amount of processing. In the Ψ algorithm (Algorithm 15) when a connected

convex vertex set, X, is stored, the corresponding Y set is the augmentation
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of X. By modifying the Ψ algorithm so that these sets are stored together, we

have an efficient method for creating a partial solution.

Input Vertices Connected convex Convex
vertex sets sets

BF1Con 16 278 9,728

BF2 32 68,876 1,225,422

BF4Con 31 21,500 803,734

dijskstra1 15 211 848

dijskstra2Con 16 245 960

dijskstra3Con 19 2,475 135,040

patricia4Con 29 691,294 53,412,360

qsort1Con 17 3,912 65,120

qsort2Con 31 8,240 4,139,576

qsort3Con 29 24,780 6,069,360

sha 16 434 4,026

sha2 38 12,597 1,052,848

sha3 46 225,998 1,661,374

susan3 40 5,304,066 125,639,352

susan4Cxon 38 4,607,411 75,457,856

cjpeg1Con 39 485,718 8,338,040

Table 5.4 Comparison between numbers of convex vertex sets and connected
convex vertex sets with no vertices forbidden

5.5.3 Reclaiming the full set of convex vertex sets from a

partial solution

A range of methods have been developed to produce the full set of convex vertex

sets from a partial solution. Each of these methods is passed a partial solution

as an argument, and returns the set of convex vertex sets in D by iterating over

the partial solution. Each element is completely processed before moving onto

the next.

Brute force

Brute force is a näıve algorithm that finds the convex vertex sets of each Y set

by comparing it with each convex vertex set already found.
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For each (A,B) pair in the partial solution ρ, its B set is examined and

compared to the A set of every other convex vertex set in the library. If the

examined A set is a subset of the examined B set, then the union of the two

A sets forms the A set of a new element of S which is added to the end of

the array with the empty set as its augmentation. This approach is obviously

inefficient but has the advantage that the original DDG need not be known

to compute the full set of convex vertex sets. The partialSolutionBrute(ρ)

algorithm shown in Algorithm 19 returns all convex vertex sets as A values in

T .

Algorithm 19 partialSolutionBrute(ρ): processing a partial solution by brute
force

partialSolutionBrute(ρ)
{

Let T be a copy of ρ
∀(A,B) ∈ ρ,B 6= ∅ do
∀(A′, B′) ∈ T do

if A′ ⊆ B
{

T ← T ∪ {(A ∪A′, ∅)}
}

return T
}

Assisted

The assisted method uses the exhaustive algorithm [PAI06] to find all the

convex vertex sets of DB for a given (A,B) ∈ ρ. Once a non-empty B set

has been found, a modified version of the exhaustive algorithm in [PAI06] is

executed to find all convex vertex sets of DB . For each convex vertex set C

of DB , (A ∪ C) ∈ S(D). The algorithm in [PAI06] was chosen for simple

implementation, any other algorithm for enumerating convex subsets would

have been equally suitable. This method is shown in Algorithm 20.
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Algorithm 20 partialSolutionAssisted(ρ): processing a partial solution using
a convex vertex set enumerating algorithm

partialSolutionAssisted(ρ)
{
D ← ∅
∀(A,B) ∈ ρ,B 6= ∅ do
S(DB)← exhaustive(DB)
∀C ∈ S(DB) do
D ← D ∪ (A ∪ C)

return D
}

Search tree

The search tree method requires that call trees corresponding to the execution

trace of the Ψ algorithm are available. These trees are used to build a search

tree that allows efficient lookup of convex subsets.

The search tree (shown in Figure 5.3) and created from Example 15 is con-

structed from the call trees shown in Figure 5.2. These call trees are combined

to form the larger search tree by adding vertices that connect different subtrees

together. Internal vertices are labelled with a splitting vertex and leaf vertices

are labelled with a convex vertex set.

Search trees created in this way have the property that if a search tree

vertex t is labelled with a DAG vertex n, then all the convex vertex sets in

the left subtree will contain the vertex n and all the convex vertex sets in the

right subtree will not contain n. This property may be used to find all convex

subsets of a given set in linear time complexity proportional to the number of

subsets found.

A sample algorithm for outputting the convex subsets of a given vertex set is

shown in Algorithm 21. The function label(t) returns the pivot vertex attached

to a search tree vertex t, whereas the nextLeft(t) and nextRight(t) return the

left and right descendants of t respectively. Finally, the function set(t) returns

the convex set attached to the search tree vertex t. The overall search tree
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Figure 5.3 An example of a completed Search Tree formed by combining the
components of Figure 5.2

algorithm is shown in Algorithm 22.

Algorithms such as Algorithm 21 can be used to quickly find all of the

convex subsets of a B set. Hence a full solution can be quickly built from a

partial solution.

Each new convex vertex set found by this method must be immediately

added to the search tree so that convex vertex sets of three or more connected

components are found. Furthermore, because new convex vertex sets are added

to the search tree when they are found, we must ensure that all convex vertex

sets required for the expansion of an (A,B) pair already exist in the search tree.

This is achieved by processing vertex sets in (A,B) in reverse order of creation.

5.6 Performance of algorithms

We present experimental data on the performance of the algorithms in this

chapter. Appendix A describes the conditions of the tests and Appendix B

describes the provenance of the data.
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Algorithm 21 convexSubsets(S, t): returning all convex subsets of a set S
given a search tree rooted at t

convexSubsets(S, t)
{

if (nextLeft(t) = nextRight(t) = ∅)
{

output set(t)
return

}
if (label(t) ∈ S))
{

convexSubsets(S, nextLeft(t))
}
convexSubsets(S, nextRight(t))

}

Algorithm 22 partialSolutionST (ρ, t): processing a partial solution using
program search tree rooted at t

partialSolutionST (ρ, t)
{
D ← ∅
∀(A,B) ∈ ρ,B 6= ∅ do
U ← convexSubsets(B, t)
∀U ∈ U do
{

D ← D ∪ (A ∪ U)
addToSearchTree(A) ∪ U)

}
return D

}
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Input Vertices Convex Time Time Time Time
sets split Φ Ψallsets exhaustive

bf1 18 38,912 0.07 0.02 0.02 0.03

bf2 32 1,225,422 1.97 0.66 0.68 3.70

bf4Con 31 803,734 1.22 0.41 0.44 1.90

cjpeg3Con 24 564,000 0.93 0.26 0.28 0.81

qsort1 21 1,041,920 1.38 0.48 0.50 1.09

Table 5.5 Timings all sets, no forbidden vertices

Input Vertices Convex Calls Calls Calls Calls
sets split Φ Ψallsets exhaustive

bf1 18 38,912 60,500 39,912 77,804 196,487

bf2 32 1,225,422 1,851,525 1,225,422 2,450,810 10,303,079

bf4Con 31 803,734 1,217,199 803,734 1,607,435 5,281,741

cjpeg3Con 24 564,000 870,014 564,000 1,127,974 3,254,935

qsort1 21 1,041,920 1,634,484 1,041,920 2,083,819 4,960,831

Table 5.6 Recursive calls all sets, no forbidden vertices

5.6.1 Enumerating all convex vertex sets

Table 5.5 and Table 5.6 show the performance of the four algorithms for enu-

merating all convex sets:Φ; Ψallsets;split and exhaustive. Figure 5.5 and Fig-

ure 5.4 show the performance of the algorithms on tree and lattice based DAGs

of various sizes.

The performance gains by both the Φ and Ψallsets algorithms over the split

and exhaustive algorithms are substantial. The Φ algorithm performs slightly

better than the Ψallsets algorithm.

Enumerating all convex vertex sets subject to external forbidden vertices

This section gives results on the ability of the Φ and Ψallsets algorithms to

process test cases that include external forbidden vertices.

Table 5.7 and Table 5.8 show the performance of the four algorithms for enu-

merating all convex sets:Φ; Ψallsets; split and exhaustive. s The performance

gains by both the Φ and Ψallsets algorithms over the split and exhaustive
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Figure 5.4 Performance of our algorithms against split and exhaustive on
DAGs of lattice format

Figure 5.5 Performance of our algorithms against split and exhaustive on
DAGs of tree format



Performance of algorithms 109

algorithms are substantial. The Φ algorithm performs slightly better than the

Ψallsets algorithm.

Enumerating all convex vertex sets subject to external and internal forbid-

den vertices

Table 5.9 and Table 5.10 show the performance of the four algorithms for enu-

merating all convex sets:Φ; Ψallsets; split and exhaustive. In this experiment

both external and internal vertices can be forbidden.

It is notable that the Φ algorithm quickly becomes unable to cope with the

introduction of internal forbidden vertices and is unable to complete many of

the test cases. However, the Ψallsets algorithm remains efficient and continues

to assert its dominance over the split and exhaustive algorithms.

5.6.2 Enumerating connected convex vertex sets

Tables 5.11 and 5.12 show the performance of the Ψ and split algorithms when

enumerating connected convex sets. Figure 5.6 shows the performance of the

algorithms on lattice-based DAGs of various sizes, whereas Figure 5.7 shows

the performance of the algorithms on tree-based ones. It can be noted that the

Ψ correctly enumerates all connected convex vertex sets in around half the time

taken by the split algorithm.

The algorithms are also compared when enumerating connected convex ver-

tex sets with external forbidden vertices; their relative performance in this case

can be seen in Table 5.13 and Table 5.14.

5.6.3 Feasibility of partial solutions

The time taken by the SearchGraph and Assisted methods to generate a full

set of convex vertex sets are compared to time taken by Psiallsets when applied

to the synthetic tree graphs. In Figure 5.9 the experiment is performed on
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Input Vertices Convex Time Time Time Time
(forbidden) sets split Φ Ψallsets exhaustive

bitcnts1+ 68(22) 319,865 0.57 0.24 0.42 1.43

bitcnts3+ 55(19) 5,703 0.01 0.00 0.00 0.03

cjpeg3+ 39(23) 11,967 0.02 0.00 0.02 0.02

gsm8+ 41(13) 84,727 0.13 0.06 0.07 0.26

patricia4+ 52(29) 3,194,983 5.79 2.60 4.07 5.82

susan3+ 53(27) 489,215 0.77 0.37 0.60 1.58

sha3+ 52(10) 334,388 0.56 0.26 0.30 0.90

rijndeal4+ 52(15) 112,379 0.18 0.08 0.10 0.69

Table 5.7 Timings all sets, external forbidden vertices

Input Vertices Convex Calls Calls Calls Calls
(forbidden) sets split Φ Ψallsets exhaustive

bitcnts1+ 68(22) 319,865 490,237 319,865 639,684 4,339,400

bitcnts3+ 55(19) 5,703 10,327 5,703 11,370 96,882

cjpeg3+ 39(23) 11,967 31,654 11,967 23,918‘ 88,795

gsm8+ 41(13) 84,727 132,153 84,727 169,426 922,361

patricia4+ 52(29) 3,194,983 7,319,026 3,194,983 6,684,853 23,063,249

susan3+ 53(27) 489,215 838,187 489,215 978,404 4,756,387

sha3+ 52(10) 334,388 511,010 334,388 668,734 2,502,745

rijndeal4+ 52(15) 112,379 175,884 112,379 224,721 1,779,723

Table 5.8 Recursive calls all sets, external forbidden vertices
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Input Vertices Convex Time Time Time Time
(forbidden) sets split Φ Ψallsets exhaustive

bf4+ 45(24) 8,527 0.01 0.17 0.01 0.04

bitcnts1+ 68(40) 3,328 0.01 DNF 0.00 0.01

bitcnts2+ 74(43) 3,454,311 2.18 DNF 1.42 7.62

cjpeg1+ 65(39) 66,943 0.13 DNF 0.07 0.39

cjpeg4+ 62(40) 17,695 0.03 DNF 0.02 0.05

fft2+ 72(39) 7,340,063 4.78 DNF 1.44 16.89

patricia3+ 73(44) 1,576,960 2.98 0.41 0.89 6.08

Table 5.9 Timings all sets, external and internal forbidden vertices

Input Vertices Convex Calls Calls Calls Calls
(forbidden) sets split Φ Ψallsets exhaustive

bf4+ 45(24) 8,527 20,451 240,943 86,301 114,406

bitcnts1+ 68(40) 3,328 6,642 DNF 6,628 71,183

bitcnts2+ 74(43) 3,454,311 5,689,187 DNF 7,225,205 55,131,601

cjpeg1+ 65(39) 66,943 129,053 DNF 306,660 1,548,680

cjpeg4+ 62(40) 17,695 133,159 DNF 212,058 198,103

fft2+ 72(39) 7,340,063 11,941,593 DNF 20,709,403 85,661,935

patricia3+ 73(44) 1,576,960 3,119,458 5,230,239 5,144,225 23,926,510

Table 5.10 Recursive calls all sets, external and internal forbidden vertices
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Figure 5.6 Performance of Ψ against split on DAGs of lattice format for con-
nected convex vertex sets

Figure 5.7 Performance of Ψ against split on DAGs of tree format for connected
convex vertex sets
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Input Vertices Convex Time Time
sets split Ψ

FFT1 34 1,358,876 2.56 0.57

bf2 32 68,876 0.11 0.05

bf4Con 31 21,500 0.03 0.02

patricia4Con 29 691,294 1.16 0.47

qsort2Con 31 8,240 0.01 0.01

qsort3Con 29 24,780 0.03 0.02

sha2 38 12,597 0.02 0.01

sha3 46 225,998 0.34 0.19

susan3 40 5,304,066 8.38 4.04

susan4Con 38 4,607,411 8.28 3.47

cjpeg1Con 39 485,718 0.71 0.37

cjpeg3Con 24 15,734 0.03 0

Table 5.11 Timings for enumerating connected sets with no forbidden vertices

Input Vertices Convex Calls Calls
sets split Ψ

FFT1 34 1,358,876 2,717,787 2,717,718

bf2 32 68,876 137,785 137,720

bf4Con 31 21,500 43,032 42,969

patricia4Con 29 691,294 1,382,618 1,382,559

qsort2Con 31 8,240 16,512 16,449

qsort3Con 29 24,780 49,590 49,531

sha2 38 12,597 25,233 25,156

sha3 46 225,998 452,043 451,950

susan3 40 5,304,066 10,608,173 10,608,092

susan4Con 38 4,607,411 9,214,861 9,214,784

cjpeg1Con 39 485,718 971,476 971,397

cjpeg3Con 24 15,734 31,493 31,444

Table 5.12 Recursive calls made when enumerating connected sets with no
forbidden vertices
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Input Vertices Convex Time Time
(forbidden) sets split Ψ

bitcnts1Con+ 60(15) 69,417 0.14 0.07

bitcnts2Con+ 72(23) 4,658,237 8.97 4.58

bitcnts4+ 54(18) 36,976 0.08 0.04

cjpeg1Con+ 51(16) 210,911 0.37 0.19

cjpeg4Con+ 57(19) 378,696 0.75 0.37

fft2Con+ 66(27) 944,902 1.63 0.89

patricia3+ 73(38) 207,856 0.46 0.2

sha3+ 52(10) 125,806 0.21 0.11

Table 5.13 Timings for enumerating connected sets with external forbidden
vertices

Input Vertices Convex Calls Calls
(forbidden) sets split Ψ

bitcnts1Con+ 60(15) 69,417 138,910 138,789

bitcnts2Con+ 72(23) 4,658,237 9,316,570 9,316,425

bitcnts4+ 54(18) 36,976 74,025 73,916

cjpeg1Con+ 51(16) 210,911 421,890 421,787

cjpeg4Con+ 57(19) 378,696 757,469 757,354

fft2Con+ 66(27) 944,902 1,889,898 1,889,765

patricia3+ 73(38) 207,856 415,824 415,677

sha3+ 52(10) 125,806 251,675 251,570

Table 5.14 Recursive calls made when enumerating connected sets with external
forbidden vertices

synthetic lattice graphs, and in Figure 5.8 the experiment is performed on

synthetic tree graphs.

It is apparent from these results that the time taken to create and use a

partial solution to enumerate all convex vertex sets is competitive with the time

taken by the other algorithms presented in this chapter. This is an encouraging

result and validates these methods as being practical.

5.7 Summary

An algorithm has been presented for fast and flexible enumeration of connected

convex vertex sets of a DAG that performs favourably with the current fastest
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Figure 5.8 Performance of methods for processing a partial solution on graphs
of lattice format

Figure 5.9 Performance of methods for processing a partial solution on graphs
of tree format
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algorithms. Furthermore, several algorithms for enumeration of all convex ver-

tex sets of a DAG have been presented. These include a fast, but inflexible

algorithm and a slightly slower, but more flexible, approach.

The concept of a partial solution has been explored and methods have been

demonstrated that can extract a full solution from a partial one in reasonable

time.

It is clear that the choice of enumeration algorithm depends greatly on the

requirements of the user and there are circumstances in which each of these

algorithms is attractive.



Chapter 6

Exhaustive search under I/O constraints

This chapter presents an algorithm, outAlgorithm, for enumerating convex

vertex sets subject to output constraints. It then presents the Ω family of three

algorithms: Ωcount; Ωpaths; and Ωsplitting, which enumerate convex vertex sets

that correspond to candidate instructions whose inputs and outputs are limited

by specified bounds.

The outAlgorithm algorithm forms the foundation for the Ω family of al-

gorithms —each member of the Ω family modifies outAlgorithm so that only

convex vertex sets that satisfy input constraints are stored. We give the worst

case and average case complexity of each algorithm. Elements of the work in

this chapter have previously appeared in [GJR+08b].

6.1 Overview

In Chapter 2 we noted that real processor implementations limit the number of

simultaneous register reads and writes. As a result, a user may place an upper

limit on the number of values that a valid candidate instruction may read or

write during execution. Recall from Lemma 5 in Chapter 3 that when convex

vertex sets are bounded by specific I/O constraints, the maximum number of

convex vertex sets is polynomial in the size of the input DAG. As a result,

algorithms designed to enumerate such convex vertex sets can achieve a lower
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time complexity than the exhaustive algorithms shown previously.

In practice this allows significantly larger DAGs to be processed. For exam-

ple, we could filter the convex vertex sets found by the Φ and Ψ algorithms in

Chapter 5 so that only convex vertex sets that satisfied the I/O constraints were

stored. However, our experiments showed that neither Φ or Ψ could process

DAGs that contained more than 80 valid vertices. By contrast, the Ω family of

algorithms can make use of the asymptotic advantage given by the constraint,

and in Section 6.6, we shall report that all members of the Ω family process the

benchmark ‘sha’ from the PY04 dataset, which has 1,811 vertices, in under 20

seconds for I/O constraints as large as 5/2.

6.2 Output sets

DEFINITION 18 An output set is a set VOut ⊆ V (D), such that there is at

least one convex vertex set C ∈ S(D) where OUT (C,D) = VOut.

The algorithms presented in this chapter first find all output sets in D that

have cardinality less than or equal to outConstraint. Then for each output set

VOut, all the valid convex vertex sets C for which OUT (C,D) = VOut are found.

The number of output sets in D that have cardinality no greater than

outConstraint is much smaller than the total number of subsets with cardi-

nality no greater than outConstraint. In Table 6.1, the relationship between

the total number of sets and the number of output sets is shown on a variety of

test cases for outConstraint = 2. It is clear that searching näıvely for output

sets would be inefficient.

To efficiently enumerate output sets we utilise three properties of output sets

to prune the search space. If a set X satisfies thee following three conditions,

and Y is the convex closure of X, then Y is a convex set such that OUT (Y,D) =

X.
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Input Vertices Total Output
(valid) sets sets

BF2 32(23) 253 172

BF3 338(328) 53,628 5,743

BF4 35(27) 351 260

cjpeg1 43(31) 465 352

cjpeg2 161(148) 10,878 8,912

gsm2 328(276) 37,950 22,221

gsm3 446(401) 80,200 60,272

susan1 112(101) 5,050 3,039

susan2 207(202) 20,301 11,647

Table 6.1 Comparing numbers of output sets of no more than two elements
with total number of sets with no more than two elements

Condition 1

If A is an output set, then A∩F (D) = ∅. If A∩F (D) 6= ∅ and OUT (C,D) = A,

then C ∩ F (D) 6= ∅ and C is not a valid convex vertex set.

Condition 2

If A is an output set, there is a path from each member of A to some vertex

f ∈ F (D), such that the path does not contain any other member of A1.

If this condition is not satisfied, then there is a vertex a ∈ A such that all

paths in D from a to any vertex f ∈ F (D) contain a member of the set A \ {a}

and A is not an output set. A proof of this is given in Lemma 12.

Example 16 shows that if the output set is chosen to be {4, 3, 2}, then

there would be no corresponding convex vertex sets. All convex vertex sets

that include {4, 3, 2} have output set {4, 3}; the vertex 2 cannot be an output

in this case because all paths from 2 to forbidden vertices go through {3, 4}.

Lemma 12 If all paths in a DAG D from a vertex a ∈ A to any vertex f ∈

F (D) contain a member of the set A \ {a}, then there exists no convex vertex

set C for which OUT (C,D) = A.

1Recall from Chapter 2 that there is a path from a forbidden vertex to each vertex in the
DAG, and at least one path from every vertex to a forbidden vertex.
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Proof Let C be a convex vertex set of D such that OUT (C,D) = A. Because

a is an output vertex it has a child b 6∈ C. There is a path from b to a vertex in

F (D) that, by definition, includes a vertex c ∈ A ⊆ C so C cannot be convex.

⋄
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Example 16: Two cases where a set is not a valid output set

Condition 3

If A is an output set, then A does not require the addition of another output

vertex to satisfy convexity (Lemma 13). For example, if A = {1, 4} in Exam-

ple 16, then A is not an output set because {3} must be included to maintain

convexity in any convex vertex set produced. However, if {3} is included, then

{3} will be an output of the convex vertex sets produced.

Lemma 13 If there is a path in a DAG D from a vertex b to an element of

F (D) and that path does not contain at least one member of A, then:

a) there is no convex vertex set C such that b ∈ C and OUT (C,D) = A.

b) if b is also on a path between two elements of VOut, there is no convex

vertex set C such that, b ∈ C and OUT (C,D) = A.

Proof a) Let P be a path in D such that P = b, p1, p2, . . . , pi, . . . , f where

f ∈ F (D) and P ∩ A = ∅. Without loss of generality let pi ∈ C and pi+1 6∈ C.

So pi is an output of C, but pi 6∈ A, thus OUT (C,D) 6= A.

b) If b is on a path between two element of A then any set C such that
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OUT (C,D) = A must contain b due to convexity, however by (a) this is not

possible. ⋄

6.2.1 The validOutputs() function

Algorithm 24 shows an efficient method for enumerating output sets of cardinal-

ity ≤ outConstraint. The function is called with validOutputs(∅, |V (D)|,D)

and stores all output sets of cardinality ≤ outConstraint.

The validOutputs() function is passed an output set VOut and identifies ver-

tices in V (D) that could be added to VOut to make a new output set. If a vertex

s is suitable, then VOut∪{s} is an output set, which is stored before a recursive

call is made with VOut ∪ {s} as the new output set. The variable lastAdded is

used to ensure that the same output set is not stored more than once, and the

function will not make any recursive calls if |VOut| = outConstraint.

The function L(A,D)(Algorithm 23) returns all vertices v ∈ V (D) such that

there is a directed path P from v to a member of F (D) and P does not contain

any element of A. The L(A,D) function is used to ensure that only output sets

are stored by validOutputs(). If VOut is the current output set then the vertices

contained in L(VOut,D) are exactly those vertices that can be added to VOut by

Lemma 12. Then validOutputs() satisfies condition 2 by only choosing vertices

in L(VOut,D) to add to the current output set.

The L(A,D) function is also used by validOutputs() to satisfy condition 3.

If VOut is the current output set and a vertex s ∈ L(VOut,D) dominates any of

the vertices in VOut, then additional checks are required. This is because the

inclusion of s may force the inclusion of extra vertices to retain convexity. If any

of these extra vertices are members of L(VOut,D), then condition 3 would be

violated. To avoid this, validOutputs() will only add a vertex that dominates

VOut if all of its direct descendants that also dominate VOut are not members

of L(VOut,D).
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Algorithm 23 L(VOut,D): filtering vertices with regard to an output set

L(VOut,D)
{

L← ∅
∀(a, b) ∈ E(D) (in reverse lexicographic order)

if ((b ∈ L, a 6∈ VOut)∨ (a ∈ F (D)))
{

L← L ∪ {a}
}

return L
}

Algorithm 24 validOutputs(VOut, lastAdded,D): enumerating output sets

validOutputs(VOut, lastAdded,D)
{

if |VOut| ≤ outConstraint
{

temp← L(VOut,D) ∩ dom(VOut,D)
temp2← temp \X, where x ∈ X if there is an x− temp path in D, of length > 1
valid← L(VOut,D) \ temp2.
∀ni ∈ valid, i < lastAdded
{

store VOut ∪ {ni}
validOutputs(VOut ∪ {ni}, i,D)

}
}

}
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Lemma 14 a) The L(VOut,D) function (Algorithm 23) has time complexity

O(|E(D)|).

b) The validOutputs(VOut, lastadded,D) function (Algorithm 24) has time

complexity O(|E(D)|·|V (D)|outConstraint) when called as validOutputs(∅, |V (D)|,D)

.

Proof a) The function L(VOut,D) requires that the set of edges are iterated

over (an O(|E(D)|) operation), during which up to |E(D)| vertices may be

added to the set L. Thus the function L(VOut,D) has complexity O(|E(D)|).

b) The function validOutputs() performs the following operations. The

set valid is created in O(|E(D)|) time and has size at most |E(D)|. For

each v in valid, the sets newF and X can be formed in O(|E(D)|) time

and this computation can be charged to the recursive call recurseFΩout(X ∪

{v}, newF,D). Thus a single call to validOutputs() is O(|E(D)|). Because the

validOutputs algorithm finds each output set exactly once, it can make no more

than |V (D)|outConstraints recursive calls, when enumerating output sets with no

more than outConstraint elements. Thus validOutputs(∅, |V (D)|,D) function

has complexity O(|E(D)| · |V (D)|outConstraint. ⋄

6.2.2 Enumerating convex vertex sets subject to output con-

straints

Algorithm 25 shows the outAlgorithm algorithm, which is an algorithm for

enumerating the convex vertex sets of a DAG that satisfy output constraints.

It iterates over the set of output sets that have been stored by validOutput().

For each output set VOut, outAlgorithm will store all convex vertex sets C, such

that OUT (C,D) = VOut.

The outAlgorithm algorithm has the same approach and basic functionality

as the Ω family of algorithms. Later sections will show the different ways that

the Ω family influence the structure of this algorithm.
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The key insight of the outAlgorithm algorithm is that if OUT (C,D) = VOut,

then all vertices in L(VOut,D) can safely be made forbidden by Lemma 15. This

reduces the size of the search space considerably, particularly when there are a

small number of outputs some distance apart.

The outAlgorithm algorithm forms the set newF = L(VOut,D) and the set

X is initialised as the convex closure of VOut. Then X ⊆ C and newF ∩C = ∅

for any C such that OUT (C,D) = VOut.

The outAlgorithm algorithm passes the X and newF sets to a recur-

sive function recurseFΩout(), which uses a similar divide and conquer strat-

egy to the Ψ algorithm that was presented in Section 5.2. During each call,

recurseFΩout() chooses a vertex that is not a member of X or newF , and

makes one recursive call in which the vertex is added to X, and one recursive

call in which the vertex (along with all vertices that have a path to the splitting

vertex) is added to newF . This vertex is known as the splitting vertex. If there

are no available splitting vertices, then recurseFΩout() stores the current X set

and terminates.

Lemma 15 Let C ⊆ V (D) be convex in D. Iff OUT (C,D) = VOut, then

C ∩ L(VOut,D) = ∅.

Proof First assume that OUT (C,D) = VOut. For contradiction let s be the

topologically last vertex in C ∩ L(VOut,D). Because s ∈ L(VOut,D) there

is a path, P say, in V (D) \ VOut from s to a forbidden vertex. Let P =

{s, p1, . . . , f} and note that p1 6∈ C. Because s is the topologically last vertex

in C ∩ L(VOut,D), and it has an edge to p1, then s is an output vertex of

C. However, because OUT (C,D) = VOut and VOut ∩ L(VOut,D) is empty by

definition, then we have a contradiction, as required.

Now assume C ∩ L(VOut,D) = ∅. For contradiction let a ∈ OUT (C,D) \

VOut. Because a ∈ OUT (C,D) it has a path to a forbidden vertex not containing

an element in VOut(Lemma 12). Then a ∈ L(VOut,D) by definition of L() so
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we have a contradiction, as required. ⋄

Algorithm 25 outAlgorithm : enumerating convex vertex sets under output
constraints

ΩOut(D)
{
∀VOut stored by validOutputs(∅, |V (D)|,D)
{

newF ← L(VOut,D)
X ← VOut ∪ (dom(VOut) ∩ domBy(VOut))
recurseFΩout(X,newF,D)

}
}

recurseFΩout(X,newF,D)
{

if (dom(X,D) \ newF ) = ∅
{

store X
return

}
Let v be the vertex vi ∈ (dom(X,D) \ newF ) such that i is maximum.
recurseFΩout(X ∪ {v}, newF,D)
recurseFΩout(X,newF ∪ {v} ∪ dom(v,D),D)

}

Example

Example 17 is used to show the operation of the outAlgorithm algorithm given

the output set VOut = {8, 9}, and F (D) = {0, 1, 10, 11}. A trace of the calls

made by recurseFΩout({8, 9}, {0, 1, 4, 7, 10, 11},D) is shown in Figure 6.1. It

successfully finds all convex vertex sets whose outputs set is {8, 9}.

Firstly, the vertices {4, 7} are added to newF because they are in the set

returned by L({8, 9},D). The set X is {8, 9} because there are no paths between

members of VOut, and the set newF is {0, 1, 4, 7, 10, 11}.

To illustrate the potential savings associated with pruning the search space

by use of the L() function, we consider the situation in which VOut in Example 17

is changed to {5, 9}. Then 2 is the only possible choice of splitting vertex
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Example 17: DAG to demonstrate execution of Ωcount and outAlgorithm with
VOut = {8, 9} and F (D) = {0, 1, 10, 11}

because L({5, 9},D) = {0, 1, 3, 4, 6, 7, 8, 10, 11}. Then only two recursive

calls are made and the convex vertex sets {2, 5, 9} and {5, 9} are stored.

6.2.3 Restricting by input constraints with the Ω family

We require the outAlgorithm algorithm to be modified so that it only stores

convex vertex sets that obey a given input constraint. It would be possible

to add an input test just before each convex vertex set is stored so that only

sets that passed the test were stored. However, such an approach is inefficient

because it still requires the algorithm to visit every set that satisfies the output

constraint.

The following sections present more efficient ways of limiting the search

space. Each member of the Ω family gives a different modification to the basic

outAlgorithm algorithm. Each of these modifications significantly reduce the

number of recursive calls needed for exhaustive enumeration of valid convex

vertex sets under both input and output constraints.

6.3 The Ωcount algorithm

This section presents the Ωcount algorithm, which generates all convex vertex

sets that obey both input and output constraints. The outAlgorithm algorithm

shown earlier is modified to only store convex vertex sets that satisfy an input
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Figure 6.1 Call tree for recurseFΩout({8, 9}, {0, 1, 4, 7, 10, 11},D) when called
on Example 17

constraint. This modification prunes recursive calls based on the number of

permanent inputs to a convex vertex set. Examples and asymptotic proofs

follow.

6.3.1 Adding input constraints

During the execution of recurseFΩout in Algorithm 25, vertices can be added

to X and newF , but never removed. So no vertex in newF can be removed

from newF ∩ IN(X,D) and hence newF ∩ IN(X,D) can only increase in size.

If c = |newF ∩IN(X,D)|, then all convex vertex sets found by further recursive

calls have at least c inputs. If c > inConstraint, then the recursive branch in

question can be pruned because it will produce no useful convex vertex sets.

Adding this pruning criterion to the outAlgorithm algorithm gives the

Ωcount algorithm(Algorithm 26) for enumerating convex vertex sets under out-

put and input constraints.
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The splitting vertex always has an edge to a vertex in X. This ensures that

|newF ∩ IN(X,D)| increases in the recursive call in which the splitting vertex

is made forbidden: this is necessary to satisfy proof of complexity (Lemma 18).

Example

We use Example 18 to show the advantages of the input pruning performed by

the Ωcount algorithm.

Consider the case where VOut = {19} and inConstraint = 2. In this situa-

tion, the outAlgorithm algorithm would make 49 calls to enumerate 25 convex

vertex sets, but only one of those convex vertex sets would satisfy the input

constraint. By contrast, the Ωcount algorithm would only perform the 9 calls

shown in Figure 6.2 because of its use of the pruning criterion.

Example 18: Advantage of pruning by input constraints VOut = X = {19},
F (D) = {0, 1, 2, 3, 4, 5, 6, 7, 20}
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Figure 6.2 Call tree for recurseFΩcount({19}, {0,. . .,8, 20},D) when called on
Example 18 with inConstraint = 2

Algorithm 26 Ωcount : enumerating convex vertex sets under I/O constraints

Ωcount(D)
{
∀VOut stored by validOutputs(∅, |V (D)|,D)
{

Let newF ← L(VOut,D)
X ← VOut ∪ (dom(VOut) ∩ domBy(VOut))
recurseFΩcount(X,newF,D)

}
}

recurseFΩcount(X,newF,D)
{

if |IN(X,D) ∩ newF | > inConstraint
return

if (dom(X,D) \ newF ) = ∅
{

store X
return

}
Let v be the vertex vi ∈ (dom(X,D) \ newF ) such that i is maximum.
recurseFΩcount(X ∪ {v}, newF,D)
recurseFΩcount(X,newF ∪ {v} ∪ dom(v,D),D)

}
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6.3.2 Time complexity

This section gives an upper bound for the time complexity of Ωcount . Lemma 18

shows that Ωcount has time complexity O(|V (D)|outConstraint+inConstraint+1).

Lemma 16 For any X, D, and newF , with inConstraint = I, the number of

calls made by recurseFΩcount(X,newF,D) will be O(nI+1) where n = |V (D)|.

Proof The calls made by recurseFΩcount() form a binary call tree. For each

internal vertex, one child represents the addition of some vertex a and the other

child represents the rejection of the vertex a. If the vertex a is rejected, then

for all further recursive calls in the subtree a will be an external input. Each

vertex in the tree will be reachable from the root vertex by a unique sequence

of ‘select’ and ‘reject’ edges.

It follows that the depth of the call tree can be no more that n and that

there is no vertex in the call tree that is reachable from the root by a path that

contains more than I ‘reject’ edges because the external input test would have

prevented the recursive call. Then by Lemma 17, there are no more than

I+1
∑

b=1

(

n

b

)

vertices in the call tree.

Because each
(n

b

)

term in the summation has complexity O(nI+1) and there

are I such terms, then
∑I+1

b=1

(n
b

)

has complexity O(nI+1).

Because the number of vertices in the recursive call tree is of O(nI+1), the

number of recursive calls made by recurseFΩcount() is O(nI+1) for any X,D

and newF . ⋄

Lemma 17 Given a fully populated binary tree T of depth n in which child

vertices can be reached from parent vertices by either following a left link or a

right link, the number of vertices in T that can be reached from the root of T by

taking no more than L left links is
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L+1
∑

b=1

(

n

b

)

.

Proof Because T is a tree, every vertex in T can be uniquely identified by the

sequence of left and right links used to reach it from the root. The vertices in

T are in bijection with all sequences of left and right links of length at most

n− 1.

We are interested in those sequences that contain no more than L left links,

and we note that
(a

b

)

will return the number of sequences of length a that

contain exactly b left links. It follows that
(a

b

)

is also the number of vertices at

level a in T that are reachable by exactly b left links.

The total number of vertices in T reachable by no more than L left links is

L
∑

b=0

(

n−1
∑

a=0

(

a

b

)

)

.

The ‘Christmas Stocking Theorem’ [Wei] gives
∑n−1

a=0

(

a
b

)

=
(

n
b+1

)

, so the

number of vertices in T that can be reached from the root of T by taking no

more than L left links and unlimited right links is

L+1
∑

b=1

(

n

b

)

⋄

Lemma 18 The overall time complexity of Ωcount is O(nU+I+1), where U is

the output constraint, I is the input constraint, and n = |V (D)|.

Proof The number of recursive calls made by validOutputs() is limited by nU .

The complexity of each call is dominated by the call made to Ωcount(X,newF,D),
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which has linear time complexity but may make of O(nI+1) recursive calls by

Lemma 16. Because there are nU calls to a function of complexity O(nI+1),

then the complexity of the overall algorithm is O(nU+I+1). ⋄

Worst-case bounds verses the real world

When engineering implementations of algorithms it is occasionally the case

that achieving a theoretical bound compromises the performance on average

case examples.

Consider the choice of splitting vertex in Ωcount. From the point of view of

correctness all vertices in V (D) \ (newF ∪X), are equivalent, but there may be

a performance advantage to choosing either the first such vertex or the last.

Consider Example 17 with inConstraint = 2. If the splitting vertex is the

topologically last vertex not in newF , then Ωcount will make the 14 calls shown

in Figure 6.3, and find no valid convex vertex sets. However, if the splitting

vertex were to be the topologically first such vertex, then Ωcount would make

the nine calls shown in Figure 6.42.

This difference in the number of calls is that if the topologically first vertex

is added to X, then all of its direct ancestors (which are forbidden) are inputs.

This results in IN(X,D) ∩ newF growing rapidly when vertices are added to

X. However, because the direct ancestors of the splitting vertex may already

be inputs to X, then it is possible that IN(X,D) ∩ newF does not change.

Choosing the first available vertex to be the splitting vertex will make

IN(X,D) ∩ newF grow rapidly in most cases. This can reduce the number

of recursive calls made and hence reduce the time taken by the algorithm.

By contrast, when the topologically last vertex is added to X, it is unlikely

that there are any direct ancestors that are forbidden and IN(X,D) ∩ newF

grows slowly when vertices are added to X. However, when the splitting vertex

2Note that if the topologically first vertex is choosen, then the algorithm may have to
include additional vertices to maintain convexity; however it will not have to ever add more
than one vertex to newF
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is made forbidden, it is guaranteed that IN(X) ∩ newF will grow by exactly

one each time. This guarantee allows the proof of polynomial time complexity

in Lemma 18 to hold.

This thesis uses the polynomial formulation of the Ωcount algorithm because

one of the goals of this thesis is to build a more rigorous theoretical foundation

in this area.

6.3.3 Limitations of the Ωcount algorithm

Although it can be guaranteed that no valid convex vertex sets are lost by

the pruning criterion, it is not strong enough to prune unnecessary recursive

branches early enough. There are even cases where the pruning criterion re-

moves no recursive calls at all.

For example, if the recurseFΩcount algorithm is called on Example 17 such

that inConstraint = 3, then it will make 14 recursive calls to enumerate 8

convex vertex sets. These recursive calls are identical to the ones shown in

Figure 6.1. However, if recurseFΩcount is called on the same example with

inConstraint = 2, then the algorithm will still make 14 recursive calls but it

will not find any valid convex vertex sets. The recursive behaviour in this case

is shown in Figure 6.3.

We now present the Ωpaths algorithm which recognises when a combination

of newF and X can lead to no valid convex vertex sets and stops the recursive

call immediately.

6.4 The Ωpaths algorithm: using flow-based pruning to reduce

total recursive calls

The Ωcount algorithm presented in the previous section is efficient, but its prun-

ing criterion is not optimal — this can result in the algorithm chasing up ‘blind

alleys’. This section presents a different method for pruning the recursive calls
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Figure 6.3 Call tree for recurseFΩcount({8, 9}, {0, 1, 4, 7, 10, 11},D) when called
on Example 17 with inConstraint = 2

Figure 6.4 Call tree for recurseFΩcount({8, 9}, {0, 1, 4, 7, 10, 11},D) when called
on Example 17 with inConstraint = 2 and choosing first available splitting
vertex
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of the outAlgorithm algorithm by examining paths from forbidden vertices to

members of X. We introduce the use of such paths to prune the search space

of outAlgorithm, with several examples to motivate the work and to highlight

limitations that must be overcome. Later sections will apply techniques from

involving flows in networks to the problem. Finally, the intuition behind the

flow approach is distilled into the implementation-friendly Ωpaths algorithm that

is based on path finding in an augmented graph. Proofs are given for the Ωpaths

algorithm.

Lemma 19 Let X ⊆ V (D) \ F (D). Let P be a path {p0, p1, . . . , pi} where

p0 ∈ F (D) and pi ∈ X. If C ⊆ V (D) is convex in D such that X ⊆ C then

(P ∩ IN(C,D)) 6= ∅.

Proof Let j be the smallest j such that pj ∈ C. Because P is a path and p0 6∈

C, then pj−1 6∈ C and has an edge to a member of C. Thus pj−1 ∈ IN(C,D)

and P ∩ IN(C,D) 6= ∅. ⋄

6.4.1 Motivation

Consider Example 17 with VOut = X = {8, 9}, L(VOut,D) = {0, 1, 4, 7, 10, 11}

and inConstraint = 2. It was shown in Section 6.3.3 that Ωcount requires 14

recursive calls to determine that there are no valid convex vertex sets containing

X for an inConstraint of two. Now consider the following paths: 0, 2, 5, 8;

1, 3, 6, 9; and 4, 8. By Lemma 19 any convex vertex set that contains X will have

at least as many input vertices as there are paths. If the Ωcount algorithm had

been able to recognise these paths, then it would have terminated the recursion

after a single call. This use of paths from members of newF to members of X

forms the basis for the Ωpaths algorithm that is presented in this section.

In general, if there are n paths from a forbidden vertex to a member of X

in D such that vertices in V (D) \ X may only appear in one path, then all
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convex vertex sets that contain X will have at least n inputs. By finding all

such paths, some branches can be pruned.

It is quite possible to modify the outAlgorithm algorithm in such a way that

it performs a greedy search for these paths at the beginning of each recursive

call. Such an approach is practical and provides an improvement to the pruning

criterion of the Ωcount algorithm. However, there are some areas of inefficiency

that are explored in the following section. Refinements to the approach that

eliminate these inefficiencies are then presented.

6.4.2 Inefficiencies of a greedy approach

Pruning the recursive calls made by the outAlgorithm algorithm by greedily

finding directed paths from members of newF to members of X is insufficient

to prune all unnecessary recursive calls for two main reasons.

Firstly, the use of directed newF −X paths does not take into account the

need to add vertices to satisfy convexity. Consider Example 19 with VOut =

X = {6, 7} and F (D) = {0, 2, 4}. There are a maximum of 2 paths from

forbidden vertices to vertices in X3 (the paths {0, 1, 7} and {4, 5, 6} are used in

this example). However, there is no convex vertex set C with X ⊆ C such that

C has only 2 inputs because if the vertex {1} is included in C, then the vertex

set {3, 5} is also included. If {3, 5} is included, then the vertices {2, 4} become

inputs.

Secondly, finding a maximum number of paths is not trivial. Consider

Example 20 with VOut = X = {4, 5} and F (D) = {0, 1, 6}. There is at most

two paths (0, 2, 4 and 1, 3, 5) in the DAG, but if the path 0, 3, 5 is found first,

then no more paths can be found. This may result in unnecessary recursive

calls being made.

The following sections present a way of using flows in networks to improve

the pruning of recursive calls by overcoming both of these problems.

3Subject to our condition that each vertex in V (D) \ X can appear in only one path
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Example 19: DAG demonstrating the need for path-based methods to account
for included vertices, VOut = X = {6, 7} and F (D) = {0, 2, 4}
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Example 20: Difficulty in finding maximum number of paths, with VOut = X =
{4, 5} and F (D) = {0, 1, 6}

6.4.3 Modelling the problem using networks

Flows on networks [Len90] (See Section 2.1.6) can be used to find a set of

newF −X paths such that any set C ⊃ X has at least one input vertex for each

path in the set. This will improve the pruning of recursive calls by overcoming

the problems associated with DAGs such as Examples 19 and 20.

This section shows how finding the maximum value of flow in a network can

be used to develop efficient pruning criteria for our algorithms. We give some

examples of the use of network flow, before going on to create a new, path-

based, algorithm based on the flow principles. We later prove the correctness

of the path-based version.
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Building the network

Given a DAG D, a selection X, output set VOut and forbidden set newF such

that Vout ⊆ X ⊆ (V (D)\newF ), newF ⊆ L(VOut,D), and VOut = OUT (X,D),

one can construct a network ND in such a way that the flow of data through

a DDG is modelled. Each path that data may take into a custom instruction

will add flow in the network.

The network ND is constructed as follows.

For each vertex ni ∈ V (D), two vertices, nia and nib, are created in ND

and an edge (nia, nib) with capacity 1 is added. Note that such edges are the

only limited capacity edges in the network.

For each edge (nx, ny) ∈ E(D), the edges (nxb, nya) and (nya, nxa) are

added to ND both with infinite capacity, unless nx ∈ VOut.

The vertices s and t are added to the network. For each vertex ni ∈ newF

the edge (s, nia) is added with infinite capacity. For each vertex ni ∈ X the

edge (nia, t) is added with infinite capacity.

The network N has the property that the value of a maximal s − t flow in

N is equal to the minimum number of inputs required by a convex vertex set

C such that OUT (C,D) = VOut,X ⊆ C.

Finding a maximal flow in a network

The well known Ford-Fulkerson algorithm [FF56, FF57] is used to find the

maximum value of s − t flow. In general, the Ford-Fulkerson algorithm is not

guaranteed to terminate, but under the conditions used here4 the runtime of

Ford-Fulkerson is bounded by O(|E(ND)| · inConstraint).

The operation of the Ford-Fulkerson algorithm is simple: while there is a

path from s to t in a network N such that there is available capacity on all

edges in the path, a unit of flow is added to each edge on the path. We note

4The capacities on edges are all integers (edges with infinate capacity can be safely replaced
by edges with any integer capacity that is greater than the value of inConstaint) and the
process can be stopped when there is a value of flow greater than the value of inConstraint.
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Figure 6.5 Network for Example 17

that if an edge fab = k, then we may consider that cba has increased by k when

searching for paths.

When the Ford-Fulkerson algorithm has found a maximal s − t flow, the

flow can be converted back into a set of paths that each contain an input. We

then have an efficient way of finding a lower bound on the number of inputs

required for any convex vertex set containing X.

Examples

Example 17 is used to show the improvement on the pruning criteria by this

use of networks. We let {8, 9} be the output set for the following.

The network ND is constructed and shown in Figure 6.5. The maximum

value of flow in the network is 3. An example of such a flow is (S, 0a, 0b, 2a,

2b, 5a, 5b, 8a, T ; S, 4a, 4b, 8a, T ; S, 1a, 1b, 3a, 3b, 6a, 6b, 9a, T ). If the input

constraint were 2, then there can be no valid convex vertex sets for these values

of X and newF . This is a significant improvement on the seven recursive calls

that Ωcount required.

Using flows in networks provides a solution to the problems demonstrated

by Examples 19 and 20.
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Figure 6.6 Network for Example 19

Now consider Example 20. For the output and X set {4, 5} and set vertices

{0, 1}, the network ND is shown in Figure 6.7. The Ford-Fulkerson algorithm

begins by finding a s − t path with available capacity on each edge. The first

such path found is S, 0a, 0b, 3a, 3b, 5a, T . This is equivalent to the 0, 3, 5 path

found earlier; however because a flow of 1 on the edge (a, b) ∈ ND is equivalent

to a capacity of 1 on an edge (b, a) ∈ ND, the path S, 1a, 1b, 3a, 1b, 2a, 2b, 4a,

T is now available. When the flow in ND is converted back into path edges, we

get the two paths {0, 2, 4} and {1, 3, 5}—because the Ford-Fulkerson algorithm

automatically adapts paths there is no possibility of them being chosen in the

wrong order.

Now consider Example 19. For the output and X set {6, 7} and forbidden

set {0, 2, 4} the network ND is shown in Figure 6.6.

The Ford-Fulkerson algorithm finds the paths (S, 0a, 0b, 6a,T ; S, 4a, 4b, 5a,

5b, 6a, T ; 2a, 2b, 3a, 1a, 1b, 7a, T ) before terminating. This flow is equivalent to

the path edges shown in Figure 6.8 (edges used in paths are solid lines, unused
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Figure 6.8 Paths in Example 19 found by use of a maximal flow

edges are dashed).

The paths 0, 6 and 4, 5, 6 are both visible, but we also have the undirected

path 2, 3, 1, 7, which allows for vertices that must be included for convexity

by following edges in reverse. This use of undirected paths allows the correct

number of paths to be found.

The method of pruning recursive calls by total flow in the network allows a

tighter pruning criterion to be built into an algorithm.
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Drawbacks of use of flows in networks

Although the Ford-Fulkerson algorithm exhibits a low time complexity, the

constants of proportionality are large and the creation of each network is com-

putationally intensive. However, the operation of the Ford-Fulkerson algorithm

in this special case and the intuition behind the use of flows can be reduced

down to a simple path-finding algorithm. The following section gives the path-

finding algorithm in detail, and presents the Ωpaths algorithm for enumeration

of convex vertex sets under I/O constraints by use of the path-finding principles.

Because the flow based algorithms have been presented as an intermediate stage

in the development of the Ωpaths algorithm, we do not give proofs of correctness

for the network approach.

6.4.4 Input path sets

In this section we define an input path set, which can be used by the Ωpaths

algorithm to prune unnecessary recursive calls. The Ωpaths algorithm is a mod-

ification of the outAlgorithm algorithm, so we have the following sets:

VOut : VOut is the output set for any valid convex vertex sets that will be

created,

X : X is a convex set, such that VOut ⊆ X and OUT (X,D) = VOut,

newF : newF is a set of vertices that may appear in no valid convex vertex set.

L(VOut,D) ⊆ newF .

Let EA,B be a set of edges such that (a, b) ∈ EA,B if (a, b) ∈ E(D), a 6∈

A, b 6∈ B. Let E−1
A,B be the set of edges such that (b, a) ∈ E−1

A,B if (a, b) ∈ EA,B.

It is easy to check that if D is a directed acyclic graph EA,B and E−1
A,B are

disjoint. If there is an a − b edge (path) using only edges from EA,B we say

that there is a forward edge (path) a− b. If there is an a− b edge (path) using

only edges from E−1
A,B we say that there is an inverse edge (path) a− b.
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Given a DAG D, and two sets A and B, D′
A,B is the directed graph with

V (D′
A,B) = V (D), E(D′

A,B) = EA,B ∪ E−1
A,B.

DEFINITION 19 Given a DAG D and the disjoint sets X and F , we call a

set of paths P in D′
X,F from F to X an input path set if:

(1) P 6= ∅.

(2) no forward edge may be contained in two distinct paths in P.

(3) no pair of distinct forward edges in E(P) have the same initial vertex.

The Ωpaths algorithm create an input path set P from newF to X in each

recursive call. If |P| > inConstraint, then that recursive call can safely be

terminated. This modification allows the Ωpaths algorithm to tell if a recursive

call is worth pursuing instantly. Lemma 20 shows that this pruning is safe.

The following sections discuss how an input path set is formed and the

computational complexities that its use involves.

Lemma 20 Given a DAG D and the disjoint sets A and B such that A,B ⊂

V (D), let P be an input path set from A to B. If S is a set such that B ⊆ S ⊆

V (D) \ A and OUT (S,D) = OUT (B,D), then |IN(S,D)| ≥ |P|.

Proof Any path from A to B ⊆ S in D′
A,B contains at least one forward edge

of the form (i, s) ∈ E(D′
AB) such that s ∈ S and i 6∈ S. Then either (i, s) is a

forward edge and i ∈ IN(S,D) or (i, s) is an inverse edge and so (s, i) being a

forward edge implies that s ∈ OUT (S,D).

In the latter case, s ∈ OUT (S,D) = OUT (B,D) is contrary to the con-

struction of the inverse edges. Thus i ∈ IN(S,D).

Let P = {P1, . . . , Pk} s.t k = |P|, and let Pj =. . . , ij , sj , . . . , ij 6∈ S, sj ∈

S, 1 ≤ j ≤ k.

Note that for any ia, ib such that 1 ≤ a ≤ b ≤ n, if ia = ib, then (ia, sa) =

(ib, sb) by Definition 19(3). Thus a = b by Definition 19(2). Then i1, . . . , ik are

distinct. Because they are all in IN(S,D), |IN(S,D)| ≥ |P|. ⋄
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6.4.5 Constructing an input path set

The Ωpaths algorithm requires that it can quickly construct an input path set

from newF to X, and that there is no larger input path set from newF to X.

We require the following functions. Let P = {W1, . . . ,Wk} be a set of walks.

Let M ⊂ N× N.

For any walk Wi = wi1, . . . , wij , we define the functions

B((t, u),Wi,M) = |{s|t = wis, u = wi(s+1), (i, s) 6∈M}|.

(Note that B((t, u),Wi, ∅) is the number of instances of the edge (t, u) on

Wi.)

f+(t,Wi,M) =
∑

u∈V (D)

B((t, u),Wi,M)

f−(t,Wi,M) =
∑

u∈V (D)

B((u, t),Wi,M)

ff(t,Wi,M) = f+(t,Wi,M)− f−(t,Wi,M)

(Note that ff(t,Wi, ∅) is the number of edges leaving t on Wi less the

number of edges entering t on Wi. )

We generalise these functions over sets of walks as follows.

ff(t,P,M) =
∑

0<i≤k

ff(t,Wi,M),

f+(t,P,M) =
∑

0<i≤k

f+(t,Wi,M),
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f−(t,P,M) =
∑

0<i≤k

f−(t,Wi,M),

and

B((t, u),P,M) =
∑

0<i≤k

B((t, u),Wi,M).

Clearly, if Wi is an a− b walk and t ∈ V (D) \ {a, b}, then f(t,Wi, ∅) = 0.

Let Ā = V (D) \A. Suppose that Wi is an A−B walk and A,B are disjoint

subsets of V (D). Because Wi starts in A and finishes in Ā there is exactly one

more A− Ā edge contained in Wi than there are Ā−A edges contained in Wi.

So we have

∑

t∈A

ff(t,Wi, ∅) = 1

and similarly

∑

t∈B

ff(t,Wi, ∅) = −1.

So
∑

a∈A

ff(a,P, ∅) = |P| = −
∑

b∈B

ff(b,P, ∅).

Finally, for any walk or walk set we may write ff(z, P ) instead of ff(z, P, ∅)

and B((a, b), P ) instead of B((a, b), P, ∅).

To show how the Ωpaths algorithm constructs an input path set, P, we define

a P-compliant walk.

DEFINITION 20 Given a directed acyclic graph D and disjoint sets A,B ⊂

V (D), let P be an input path set from A to B, in D′
B.

Let W be a walk in D′
B, W 6∈ P. We say that W is P-compliant if:

(1) there is no forward edge in both E(W ) and E(P),
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(2) if (a, b) and (a, c) are distinct forward edges in E(W ), then (b, a) or (c, a)

is also in E(W ),

(3) for each forward edge (x, y) ∈ E(W ) we have at least one of:

(a) x has no forward edge out of it in E(P);

(b) the inverse edge (y, x) ∈ E(P);

(c) the preceding edge (w, x) on W is an inverse edge and (x,w) is a

forward edge in E(P).

Lemma 21 Let P be a walk set, and M ⊂ N× N.

There is some N such that M ⊆ N ⊂ N × N, ff(t,P,M) = ff(t,P, N)

for all t ∈ V (D), and for any a, b ∈ V (D), if B((a, b),P, N) > 0, then

B((b, a),P, N) = 0, Moreover, if B((a, b),P) > 0 and B((b, a),P) > 0, then

B((a, b),P, N) < B((a, b),P), and B((b, a),P, N) < B((b, a),P).

Proof If there is no s, t such that B((s, t),P, N) > 0 and B((t, s),P, N) > 0,

then we take N = M , as required.

We then suppose that there is some s, t such that B((s, t),P, N) > 0 and

B((t, s),P, N) > 0. Then there are the walks Wa and Wb say such that wbc =

wa(d+1) = s,wb(c+1) = wad = t, and (a, c), (b, d) 6∈M .

We form M ′ = M ∪{(c, a), (d, b)}. Note that ff(t,P,M) = ff(t,P,M ′) for

all t ∈ V (D) because exactly one instance of an edge leaving a (b) is in M ′ \M

and exactly one instance of an edge entering a (b) is in M ′ \M .

We repeat the process of finding such (s, t) and (t, s) pairs until we have some

set O,M ′ ⊆ O, such that ff(t,P,M) = ff(t,P, O), and if B((a, b),P, O) > 0,

then B((b, a),P, O) = 0 for any a, b ∈ V (D).

Thus O = N , as required. ⋄

Lemma 22 Let Q be a set of A − B walks where A,B are disjoint subsets of

V (D). Let M be a set such that if
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(a) for all t ∈ V (D):

1. if ff(t,Q) > 0, then ff(t,Q,M) ≥ 0,

2. if ff(t,Q) < 0, then ff(t,Q,M) ≤ 0,

3. if ff(t,Q) = 0, then ff(t,Q,M) = 0.

(b)
∑

t∈A ff(t,Q,M) > 0,

then there is an A−B path P s.t. for any (s, t), B((s, t), P ) ≤ B((s, t),Q,M).

Furthermore, if P is an a− b path, then ff(a,Q,M) > 0 and ff(b,Q,M) < 0.

Proof Because
∑

t∈A ff(t,Q,M) > 0, there is some vertex a ∈ A such that

ff(a,Q,M) > 0. Choose such an a and let T = a, . . . , z say, be a longest

walk such that B((s, t), T ) ≤ B((s, t),Q,M) for any (s, t) on T . So for any

s, B((s, z), T ) ≤ B((s, z),Q,M), we have f−(z, T ) ≤ f−(z,Q,M). Note that

f−(z, T ) ≥ f+(z, T ).

First suppose that ff(z,Q,M) = 0 and hence a 6= z. Then f−(z, T ) =

f+(z, T ) + 1. Because ff(z,Q,M) = 0, we have f+(z,Q,M) = f−(z,Q,M).

Hence

f+(z,Q,M) = f−(z,Q,M) ≥ f−(z, T ) = f+(z, T ) + 1 > f+(z, T ).

So

f+(z,Q,M) > f+(z, T ).

Then there is some u such that B((z, u), T ) < B((z, u),Q,M). Then T ′ =

a, . . . , z, u is a walk in D′
B such that for any (s, t), B((s, t), T ′) ≤ B((s, t),Q,M).

T ′ is longer than T contrary to the choice of T . Then ff(z,Q,M) 6= 0.

Now suppose that ff(z,Q,M) ≥ 1. So f+(z,Q,M) > f−(z,Q,M). Be-

cause f−(z, T ) ≥ f+(z, T ) we have

f+(z,Q,M) > f−(z,Q,M) ≥ f−(z, T ) ≥ f+(z, T ).
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So

f+(z,Q,M) > f+(z, T ).

Then there is some u such that B((z, u), T ) < B((z, u),Q,M). Then T ′ =

a, . . . , z, u is a walk in D′
B such that for any (s, t), B((s, t), T ′) ≤ B((s, t),Q,M)

and T ′ is longer than T contrary to the construction of T . Then ff(z,Q,M) 6>

0.

Then ff(z,Q,M) < 0. ff(z,Q,M) < 0 can only hold if z is the final vertex

on a walk in Q. All walks in Q terminate in B so z ∈ B, and T is an A − B

walk.

Let P be an A−B path such that E(P ) ⊆ E(T ). Then P is an A−B path

such that for any (s, t), B((s, t), P ) ≤ B((s, t),Q,M). ⋄

Lemma 23 Given a DAG D and the disjoint sets A and B such that A,B ⊂

V (D), let P be an input path set from A to B. Let W be a P-compliant walk

in D′
B from A to B. If |P| = k, then there exists an input path set S from A

to B such that |S| = k + 1.

Proof Let Q = P ∪{W}. Then |Q| = k +1, because W 6∈ P by Definition 20.

By Lemma 21, we may assume that there is a set M such that, ff(t,Q) =

ff(t,Q,M) for all t ∈ V (D), and for any a, b ∈ V (D), if B((a, b),Q,M) > 0,

then B((b, a),Q,M) = 0, and if B((a, b),Q) > 0 and B((b, a),Q) > 0, then

B((a, b),Q,M) < B((a, b),Q), and B((b, a),Q,M) < B((b, a),Q).

We note that by definitions 19 and 20, if (s, t) is a forward edge in D′
B ,

then B((s, t),Q) ≤ 1. Furthermore, if B((t, s),Q) > 0, then, by Lemma 21,

B((s, t),Q,M) = 0.

We inductively define M0 ⊂ . . . ⊂Mk ⊂ N×N, and the corresponding paths

P1, . . . , Pk+1, which have the property that if (s, t) is a forward edge, then (s, t)

appears in at most one Pl as follows.

Let M0 = M so M0 satisfies (a) and (b) of Lemma 22.
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Suppose 0 ≤ i ≤ k and we have defined M0 ⊂ . . . ⊂Mi, which satisfy (a) and

(b) of Lemma 22 and P1, . . . , Pi, which have no pairwise common forward edge.

By Lemma 22 there exists an a− b path, P say, a ∈ A, b ∈ B, such that for any

(s, t), B((s, t), P ) ≤ B((s, t),Q,Mi), ff(a,Q,Mi) > 0 and ff(b,Q,Mi) < 0.

Let Pi+1 = P .

Furthermore, let M ′
i ⊂ N × N be a smallest set such that for each edge

(s, t), contained in E(Pi+1), there exists an (l,m) ∈ M ′
i where Wl ∈ Q, Wl =

. . . , wlm, wl(m+1), . . ., such that wlm = s,wl(m+1) = t and (l,m) 6∈ Mi. Let

Mi+1 = Mi ∪M ′
i .

We show no forward edge in E(Pi+1) is in E(Ph), h ≤ i. If (s, t) were also

in E(Ph), then (x, y) ∈ Mh where Wl ∈ Q, Wx = . . . , wxy, wx(y+1), . . ., such

that wxy = s,wx(y+1) = t. If (s, t) were a forward edge then by definitions 19

and 20, Wx = Wl, so x = l and y = m. Then (l,m) ∈ Mh and because

Mh ⊂Mi, (l,m) ∈Mi, which contradicts the choice of l and m.

Clearly Mi ⊂Mi+1, we now show that Mi+1 satisfies Lemma 22(a) and (b).

It is easy to check that ff(a,Q,Mi) = ff(a,Q,Mi+1) − 1, ff(b,Q,Mi) =

ff(b,Q,Mi+1) + 1, and ff(t,Q,Mi) = ff(t,Q,Mi+1) for all t ∈ V (D) \ {a, b}.

So (a) of Lemma 22 hold for Mi+1.

We further note that

∑

t∈V (D)

ff(t,Q,Mi+1) =
∑

t∈V (D)

ff(t,Q,Mi) −
∑

t∈V (D)

ff(t, Pi)

=

(

∑

t∈V (D)

ff(t,Q,Mi)

)

− 1

and so

∑

t∈V (D)

ff(t,Q,Mi+1) =

(

∑

t∈V (D)

ff(t,Q,M0)

)

− i

.

Then
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∑

t∈V (D)

ff(t,Q,Mi+1) = k + 1− i.

Thus Mi+1 satisfies (a) and (b) of Lemma 22 and we have M0 ⊂ . . . ⊂ Mk

that satisfy Lemma 22 and corresponding paths P1, . . . , Pk+1, as required.

Because a forward edge may only appear in one of P1, . . . , Pk+1 and each

A−B path in D′
B contains at least one forward edge, then each of P1, . . . , Pk+1

is distinct and |{P1, . . . , Pk+1}| = k + 1. We denote the set {P1, . . . , Pk+1} as

R.

We now show that R is an input path set. Clearly, R 6= ∅, and no forward

edge may be contained in two distinct paths in R so Definition 19(1) and (2)

are satisfied.

We now show that R satisfies Definition 19(3). Suppose (u, v) and (u,w)

are distinct forward edges in E(R). Any edge in E(R) is also in either E(P)

or E(W ). Because P is an input path set, both cannot be in E(P).

Suppose both edges are in E(W ), then by Definition 20 either (v, u) or (w, u)

is in E(W ). Without loss of generality let (v, u) be in E(W ), so B((w, u),Q) > 0

Because W is a P-compliant walk, B((u,w),Q) = 1. But by choice of M , if

B(w, u),Q,M) ≥ 0, then B((u,w),Q,M) = 0, so (u,w) could not appear in

any path in R and we have a contradiction.

Then both edges cannot be in E(W ). Then without loss of generality we

assume that (u, v) ∈ E(P) and (u,w) ∈ E(W ).

Then (u,w) is a forward edge in E(W ) that satisfies Definition 20(3b) or

(3c).

Suppose that Definition 20(3b) holds for (u,w). Then (w, u) is in E(P) so

B((w, u),Q) > 0 and B((u,w),Q) = 1. But by choice of M , B(w, u),Q,M) ≥ 0

and B((u,w),Q,M) = 0, so (u,w) could not appear in any path in R and we

have a contradiction.
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Now suppose that Definition 20(3c) holds for (u,w). Then (v, u) is in E(P)

and B((v, u),Q) > 0 and that B((u, v),Q) = 1. But by construction of M ,

B((v, u),Q,M) ≥ 0 and B((u, v),Q,M) = 0, so (u, v) could not appear in any

path in R and we have a contradiction.

Thus there can be no such (u, v) and (u,w) edges and R is an input path

set of size k + 1 and we take R = S. ⋄

If P is an input path set from A to B and W is a P-compliant walk from

A to B, then by Lemma 23, the Ωpaths algorithm can construct a larger input

path set, by first constructing a compliant walk set. By repeatedly finding such

paths, input path sets of the largest possible size can be efficiently built.

DEFINITION 21 An input path set P from A to B is a maximal input path

set if there is no P-compliant walk from A to B.

6.4.6 The Ωpaths algorithm

Algorithm 27 shows the Ωpaths algorithm. The algorithm is largely similar to

Ωcount although the external input checking has been replaced with the finding

of newF -X paths.

6.4.7 Time complexity of the Ωpaths algorithm

By Lemma 24, finding a P-compliant walk for an input path set P requires

|V (D)| + |E(D)| time. Each recursive call of the recurseFΩpaths(X,newF,D)

may search for a P-compliant walk up to inConstraint times. This search-

ing dominates the remaining operations in recurseFΩpaths(X,newF,D) so it

requires |V (D)| + |E(D)| time, not including recursive calls. It is clear that

the Ωcount algorithm would never prune a recursive subtree that the Ωpaths al-

gorithm would not, because every external input to X identified by the Ωcount

algorithm would be in an input path set used by the Ωpaths algorithm. Moreover,

because the Ωcount and Ωpaths algorithms have the same criteria for selecting
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Algorithm 27 Ωpaths : enumerating convex vertex sets under I/O constraints
using newF −X paths

Ωpaths(D)
{

For all VOut stored by validOutputs(∅, |V (D)|,D)
{

Let newF ← L(VOut,D)
X ← VOut ∪ (dom(VOut) ∩ domBy(VOut))
recurseFΩout(X,newF,D)

}
}

recurseFΩpaths(X,newF,D)
{

if |P(X,newF,D)| > inConstraint
return

if (dom(X,D) \ newF ) = ∅
{

store X
return

}
Let v be the vertex vi ∈ (dom(X,D) \ newF ) such that i is maximum.
recurseFΩpaths(X ∪ {v}, newF,D)
recurseFΩpaths(X,newF ∪ {v} ∪ dom(v,D),D)

}
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a splitting vertex, the Ωpaths algorithm cannot make more recursive calls than

the Ωcount algorithm would.

By Lemma 16, the upper bound on the number of recursive calls made by the

Ωpaths algorithm is |V (D)|inConstraint+outConstraint+1. Thus the time complexity

of Ωpaths is O((|V (D)|+ |E(D)|)inConstraint+outConstraint+1.

Although the Ωpaths algorithm has a worse time complexity than the Ωcount

algorithm, the improved pruning criterion that make a dramatic difference to

the number of recursive calls made on real-world examples.

Lemma 24 Let P be an input path set from A to B. In time O(|V (D)| +

|E(D)|) we can find a P-compliant walk or determine that it does not exist. If

it does not exist, we can also find the set S and T for P in time O(|V (D)| +

|E(D)|).

Proof We will define a directed graph D′ as follows. Let R contain all vertices

in D that have a forward edge out of them in E(P). Let the vertex set of D′

be V (D′) = V (D)∪ {r′ | r ∈ R} (that is we duplicate all vertices in R). For all

edges (u, v) ∈ E(D) add the following edges to D′.

(R1): If (u, v) is a forward edge and (v, u) 6∈ E(P) and u ∈ R, then add (u′, v)

to D′.

(R2): If (u, v) is a forward edge and (v, u) ∈ E(P) or u 6∈ R, then add (u, v)

to D′.

(B1): If (u, v) is an inverse edge and (v, u) ∈ E(P), then add (u, v) and (u, v′)

to D′.

(B2): If (u, v) is an inverse edge and (v, u) 6∈ E(P), then add (u, v) to D′.

We use depth first search to find a (A,B)-path in D′ if it exists. First

assume that such a path P ′ exists. Replacing vertices of the form u′ with u, we

obtain a walk W in D, which we will show is a P-compliant walk. Because we
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are in exactly one of the cases (R1), (R2), (B1) or (B2) above, we note that W

does not contain the same edge (u, v) twice (as P ′ does not contain the same

vertex twice).

Assume that (u, v) is a forward edge on the walk W . If the corresponding

edge on P ′ was (u′, v) (implying it was created in (R1), then the edge into u′

on P ′ is of the form (w, u′)′, as (B1) is the only case where we add edges into

a vertex of the form u′. Therefore (w, u) is an inverse edge and (u,w) ∈ E(P),

so the forward edge (u, v) satisfies the properties for a P-compliant walk. Now

assume that the edge on P ′ was (u, v) (implying we used (R2), when considering

(u, v)), then (v, u) ∈ E(P) or u 6∈ R, so again (u, v) satisfies the properties for

a P-compliant walk. Therefore W is a P-compliant walk in D.

Now assume that some P-compliant walk, W ′, in D exists. Let W ′ =

w1w2w3 · · ·wl. If wiwi+1 is a forward edge and wi ∈ R and wi+1wi 6∈ E(P)

then let pi = w′
i otherwise let pi = wi for all i = 1, 2, . . . , l − 1. We will show

that P = p1p2 · · · pl is a walk from A to B in D′. If (pi, pi+1) has the form

(w′
i, wi+1) then (pi, pi+1) was indeed generated in (R1).

If (pi, pi+1) has the form (wi, w
′
i+1) then (pi, pi+1) was generated in (B1),

because W is a P-compliant walk, we have that (wi+1, wi) ∈ E(P) is a forward

edge.

If (pi, pi+1) has the form (wi, wi+1), then (pi, pi+1) was generated in (B1) or

(B2) if (wi, wi+1) is an inverse edge. Otherwise it was generated in (R2).

Because W is a P-compliant walk in D, (pi, pi+1) cannot have the form

(w′
i, w

′
i+1). Because we have p1 = w1(not p1 = w′

1), we note that P is indeed a

walk from A to B in D′, we take P ′ to be the internal path of P .

We have now shown that there exists a P-compliant walk from A to B in D

if and only if there exists a (A,B)-path in D′. This gives us the claimed time

complexity because |V (D′)| ≤ 2|V (D)| and |E(D′)| ≤ 2|E(D)|.

If there is no (A,B)-path in D′, then it is not difficult to find the set of

vertices S′, such that there is an (A, s′)-path in D′ if and only if s′ ∈ S′. Note
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that if u′ ∈ S′ for some u ∈ V (D), then u ∈ S′, as if the edge (w, u′) exists in

D′ then (w, u) also exists. Note that S = S′ ∩ V (D) is the desired S from the

statement of this lemma. Analogously we can find T . ⋄

6.5 The Ωsplitting algorithm: intelligent vertex selection for

asymptotic superiority

Although an improved pruning criterion has been presented, there are still cases

where a large number of avoidable recursive calls are made.

4
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Example 21: Motivational example for improving choice of splitting vertex,
X = VOut = {4}, F (D) = {0, 5}

Consider Example 21. Given an input constraint of 1, and an output

set of {4}, there is only one convex vertex set that matches the constraints

({1, 2, 3, 4}). However, the Ωpaths algorithm requires seven recursive calls to

find this convex vertex set (as shown in Figure 6.9).

If {1} has been chosen to be the splitting vertex in call a, then there would

have been only three calls to recurseFΩpaths. Moreover, if the algorithm had

recognised that there was only one convex vertex set, then that set could have

been stored immediately.

This section shows how sophisticated criteria can be used to direct the choice

of splitting vertices. The resulting algorithm guarantees that, if there is only

one valid set that can be produced, it will be stored with no further recursive

calls. If there is more than one remaining valid set, the splitting vertex will be
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Figure 6.9 Call tree for recursiveFΩpaths({4}, {0, 5},D) when called on Exam-
ple 21 with inConstraint = 1

chosen in such a way that there is at least one convex vertex set that contains

the splitting vertex and one that does not. This ensures that for the Ωsplitting

algorithm, if there are n valid sets that have VOut as their output set, then at

most 2n recursive calls will be required to enumerate them.

6.5.1 S and T sets

The S and T sets for a particular maximal input path set, P, from newF to

X, have a number of useful properties.

DEFINITION 22 Given a directed graph D and a maximal input path set P

from A to B, define the T set of P such that if there is a P-compliant walk

from a vertex t to B, then t ∈ T .

DEFINITION 23 Given a directed graph D and a maximal input path set P

from A to B, define the S set of P such that if there is a P-compliant walk in

D from a member of A to a vertex s, then s ∈ S. Note that A ⊆ S because

every vertex has a P-compliant walk to itself.



The Ωsplitting algorithm: intelligent vertex selection for asymptotic superiority 157

Firstly, we note that T is convex in D (Lemma 27) and has the same output

set as X (Lemma 29). Moreover |IN(T,D)| = |P| (Lemma 30). So if |P| ≤

inConstraint, then T is a valid convex set.

Secondly, we note that the vertex set V (D) \ S is convex in D (Lemma 28)

and has the same output set as X (Lemma 29). Moreover |IN(V (D) \S,D)| =

|P| (Lemma 31). So if |P| ≤ inConstraint, then V (D)\S is a valid convex set.

This set of properties for T and S will allow the Ωsplitting algorithm to

precisely direct its choice of splitting vertex.

Lemma 25 Consider a DAG D, two sets X and newF such that X ⊂ V (D),

F (D) ⊆ newF ⊆ V (D), and newF ∪X = ∅. If P is a maximal input path set

with associated S and T sets then newF ∩ T = ∅.

Proof Without loss of generality let a be in newF ∩T . There is a P-compliant

walk P from a to a member of X. P is a P-compliant walk from a member of

newF to a member of X. The presence of a P-compliant walk contradicts that

P is a maximal input path set, and there is a contradiction. ⋄

Lemma 26 Let X ⊆ V (D) \ newF be a convex set such that OUT (X,D) =

VOut. Let P be a maximal input path set from newF to X, with associated T

set. Let p, b ∈ V (D) \ L(VOut,D). If p is a direct ancestor of b and p ∈ T then

b ∈ T .

Proof Given that X ⊆ T , first suppose p ∈ X. Then b ∈ T by convexity of

X, as required.

Now suppose p 6∈ X. Because p ∈ T , there exists a P-compliant walk,

W = p, . . . , x, x ∈ X. There is a back edge (b, p) ∈ E(D′
XF ) because p 6∈ X.

Then there is a P-compliant walk, W = b, p, . . . , x, x ∈ X. ⋄

Lemma 27 Let X ⊆ V (D) \ newF be a convex set such that OUT (X,D) =

VOut, L(VOut,D) ⊆ newF . If P is a maximal input path set from newF to X

then its T set is convex in D.
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Proof For contradiction, suppose that T is not convex and there is a vertex

w 6∈ T , a path P1 in D from a vertex in T to w, and a path P2 in D from w to

a vertex in T .

The vertex w cannot be in L(VOut,D) because then all vertices on P1 would

be in L(VOut,D), which contradicts T ∩ L(VOut,D) = ∅ (Lemma 25).

However, if w 6∈ L(VOut,D), then all vertices on P1 are also in T by

Lemma 26, so we have a contradiction, as required. ⋄

Lemma 28 Let X ⊆ V (D) \ newF be a convex set such that OUT (X,D) =

VOut, L(VOut,D) ⊆ newF . If P is a maximal input path set from newF to X

and it has the associated set S, then V (D) \ S is convex in D.

Proof

For contradiction, suppose that V (D)\S is not convex and there is a vertex

w such that w ∈ S, and w is a direct descendent of a vertex x say, x 6∈ S, and

a path P in D from w to a vertex in V (D) \ S.

There is a P-compliant walk, W = w1, . . . , w, . . . say, from newF to w

because w ∈ S. Then W1, . . . , w, x is a P-compliant walk in D′ from a member

of newF to x. Then x is in S, a contradiction. ⋄

Lemma 29 Consider a DAG D, two sets X and newF such that X ⊂ V (D),

F (D) ⊆ newF ⊆ V (D), and newF ∪X = ∅, and a maximal input path set P

from newF to X, with associated T and S sets. If L(VOut,D) ⊆ newF then a)

OUT (T,D) = VOut b) OUT (V (D) \ S,D) = VOut.

Proof a) By Lemma 25 we have that T ∩ newF = ∅ and by Lemma 27 we

have that T is convex. X ⊆ T because every vertex has a P-compliant path to

itself. Then by Lemma 15 OUT (T,D) = VOut.

b) Because every vertex in newF has a path to itself newF ⊆ S and because

L(VOut,D) ⊆ newF we have (V (D) \ S)∩L(VOut,D) = ∅. Then by Lemma 15

OUT (V (D) \ S(PD,newF,X),D) = VOut. ⋄
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Lemma 30 Let X ⊆ V (D) \ newF be a convex set such that OUT (X,D) =

VOut, L(VOut,D) ⊆ newF . If P is a maximal input path set from newF to X

with associated T set, then |IN(T,D)| = |P|.

Proof Any path from newF to X ⊆ T in D′
newF,X contains at least one

forward edge of the form (i, s) such that s ∈ T and i 6∈ T . Then either (i, s) is

a forward edge and i ∈ IN(T,D) or (i, s) is an inverse edge and so (s, i) being

a forward edge implies that s ∈ OUT (T,D).

In the latter case, s ∈ OUT (T,D) = OUT (X,D) is contrary to the con-

struction of the inverse edges. Thus i ∈ IN(T,D).

Let P = {P1, . . . , Pk} such that k = |P|, and let Pj =. . . , ij , sj , . . ., such

that ij 6∈ T, sj ∈ T, 1 ≤ j ≤ n.

Note that for any ia, ib such that 1 ≤ a ≤ b ≤ n, if ia = ib, then (ia, sa) =

(ib, sb) by Definition 19(3). Thus a = b by Definition 19(4). Then {i1, . . . , ik}

are distinct. Because they are all in IN(T,D), we have that |IN(T,D)| ≥ |P|.

Let I be the set of all ij . For contradiction, let i ∈ IN(T,D) \ I. Because

i is an input vertex, it has an edge to a vertex t ∈ T in D. If there is no

forward edge out of i in E(P), then {i, t} is a P-compliant walk and i ∈ T , a

contradiction.

However, if there is a forward edge out of i in E(P), then i is on a path to a

member of X. Let j be next vertex on the path from i to a member of X. The

vertex j is not in T because then i would be a member of I. However, j, i, t is a

P-compliant walk so j ∈ T and we have a contradiction. Thus IN(T ) \ I = ∅.

Given that IN(T,X)\ I = ∅ and I ⊆ IN(T,D), we have that |IN(T,D)| =

|P| as required. ⋄

Lemma 31 Let X ⊆ V (D) \ newF be a convex set such that OUT (X,D) =

VOut, L(VOut,D) ⊆ newF . If P is a maximal input path set from newF to X

with associated S set, then |IN(V (D) \ S,D)| = |P|.
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Proof Any path from newF to X ⊆ V (D) \ S in D′
newF,X contains at least

one forward edge of the form (i, s) such that s ∈ V (D) \ S and i ∈ S. Then

either (i, s) is a forward edge and i ∈ IN(V (D) \ S,D) or (i, s) is an inverse

edge and so (s, i) being a forward edge implies that s ∈ OUT (V (D) \ S,D).

In the latter case, s ∈ OUT (V (D) \ S,D) = OUT (X,D) is contrary to the

construction of the inverse edges. Thus i ∈ IN(V (D) \ S,D).

Let P = {P1, . . . , Pk} s.t k = |P|, and let Pj =. . . , ij , sj , . . . , ij ∈ S, sj ∈

V (D) \ S, 1 ≤ j ≤ n.

Note that for any ia, ib such that 1 ≤ a ≤ b ≤ n, if ia = ib, then (ia, sa) =

(ib, sb) by Definition 19(3). Then a = b by Definition 19(4). Thus {i1, . . . , ik}

are distinct and they are all in IN(V (D) \ S,D), so |IN(V (D) \ S,D)| ≥ |P|.

Let I be the set of all ij. For contradiction, let i ∈ IN(T,D) \ I. i has an

edge to a vertex t ∈ V (D)\S in D. If there is no forward edge out of i in E(P),

then {i, t} is a P-compliant walk and i ∈ T , which is a contradiction because

i ∈ S.

However, if there is a forward edge out of i in E(P), then i is on a path

to a member of X. Let j be next vertex on the path from i to a member of

X. The vertex j is not in V (D) \ S because then i would be a member of I.

However, j, i, t is a P-compliant walk so j ∈ T and we have a contradiction

because j ∈ S. Then IN(V (D) \ S) \ I = ∅.

Given that IN(T,X)\I = ∅ and I ⊆ IN(T,D), we have |IN(V (D)\S,D)| =

|P| as required. ⋄

Directing the choice of splitting vertex

We wish to choose a splitting vertex in such a way that there is at least one

valid convex vertex set that contains the splitting vertex and one that does not.

Consider the case where S ∪ T 6= V (D). V (D) \ S and T are valid convex

vertex sets so it is simple to choose any vertex v ∈ V (D)\(S∪T ) as the splitting
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vertex.

For all further cases it can be assumed that S ∪ T = V (D).

Consider the case where the size of the input path set is equal to inConstraint.

Then no more paths may be added in further recursive calls and so S and T

cannot change. In this situation, the only valid convex vertex set for the given

X and newF is T . So T is stored and no recursive calls are made.

For all further cases it can be assumed that S ∪ T = V (D) and that n <

inConstraint.

If T 6= X, then let a be the topologically first vertex in T \ X. T \ {a}

is convex if T is, because a ∈ source(T ) so no extra vertices will be added to

maintain convexity. Then a is the only new vertex added to newF so there

can be only one more input path. |P(D,newF ∪{a},X)| ≤ |P(D,newF,X)|+

1 so the input constraint will still hold. Then T (P(X,newF,D)) \ {a}, and

T (P(X,newF,D)) are valid convex vertex sets, so a is chosen to be the splitting

vertex.

For all further cases it can be assumed that T = X, S ∪ T = V (D), and

that n < inConstraint.

We cannot choose any element of T to be the splitting vertex because T = X.

If there are any more convex vertex sets that contain X, they also contain at

least one element of IN(T,D). In this case a maximal input path set Pi from

newF ∪ {i} to X is calculated for all i ∈ IN(T,D). If |Pi| ≤ inConstraint for

some i, then that value of i is used as the splitting vertex.

If there is no i such that |Oi| ≤ inConstraint then X is the only valid

convex vertex set so we store it and return

We now have an algorithm that identifies when there is only one remaining

valid convex vertex set for a given X, newF and D, and will choose the splitting

vertex in such a way that there is always at least one valid convex vertex set in

every branch. The algorithm Ωsplitting incorporates these advances. Note that

if recurseFΩsplitting() makes any recursive calls, then each leaf in the recursive
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call tree will represent the storage of a valid convex vertex set.

6.5.2 Time complexity

The validOutputs() function will make a maximum of noutConstraint recursive

calls when enumerating output sets that have no more than outConstraint

elements and, by Lemma 32, we also have that recurseFΩsplitting() will be

executed no more than noutConstraint + 2|Sio(D)| times. By Lemma 14 and

Lemma 24 the complexities of validOutputs() and recurseFΩsplitting() are

O(|V (D| + |E(D)|). Then the overall time complexity of the Ωsplitting algo-

rithm is O(|V (D)|outConstraint + |Sio(D)| · |E(D)|).

Lemma 32 For a DAG D of size n, which has m valid convex vertex sets

under I/O constraints when the input constraint is inConstraint, and the out-

put constraint is outConstraint, recurseFΩsplitting() will be executed at most

noutConstraint + 2m times.

Proof Consider that the calls to recurseFΩsplitting() can be viewed as a forest

of binary trees. Each tree is either a single vertex, which represents a situation

where there were no valid convex vertex sets for a particular output set (there

can clearly be at most noutConstraint of these), or they are binary trees, which

have the property that each leaf of the tree corresponds to a valid convex vertex

set. At least half the vertices in a binary tree are leaf vertices so if there are

a total of m leaf vertices in the forest then there can be no more than 2m

such vertices. Thus there can be no more than noutConstraint + 2m calls to the

recurseFΩsplitting() function. ⋄

6.6 Performance of algorithms

This section compares the performance of the Ω family of algorithms with that

of the split and exhaustive algorithms. Appendix A gives details of the ex-
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Algorithm 28 Ωsplitting : enumerating convex vertex sets under I/O con-
straints using intelligent selection of splitting vertex

Ωsplitting (D)
{

For all VOut stored by validOutputs(∅, |V (D)|,D)
{

Let newF ← L(VOut,D)
X ← VOut ∪ (dom(VOut) ∩ domBy(VOut))
recurseFΩsplitting(X,newF,D)

}
}

recurseFΩsplitting(X,newF,D)
{

numberOfPaths← |P(X,newF,D)|
if numberOfPaths > inConstraint

return
S ← S(P(X,newF,D))
T ← T (P(X,newF,D)
if V (D) 6= S ∪ T

v ← vi ∈ V (D) \ (S ∪ T ) such that i is maximum.
else
{

if numberOfPaths = inConstraint
store X

else
if X = T

v ← vi ∈ S \ newF such that i is maximum.
else

if ∃i ∈ IN(X,D) s,t inConstraint ≥ |P(X,newF ∪ {i},D)|
v ← i

}
recurseFΩsplitting(X ∪ {v}i ∪ (domBy(v,D) \ newF ), newF,D)
recurseFΩsplitting(X,newF ∪ {v},D)

}
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perimental setup.

6.6.1 Performance on test cases

Results are shown in Tables 6.2 and 6.3 for the PY04 dataset and Tables 6.6

and 6.7 for the CMS07 dataset.

It is clear that the Ωcount algorithm is faster on all test cases than the split

and exhaustive algorithms. The improvement made by the Ωcount algorithm

varies greatly from case to case, ranging from 30% to over an order of magnitude

on test cases in the PY dataset.

The Ωpaths algorithm performs well, although it is inferior to split on some

of the test cases. Its performance is generally better than exhaustive and it

is clearly a practical algorithm for tackling the problem.

6.6.2 Performance on synthetic DAGs

Figures 6.10 and 6.11 show the relative performance of the five algorithms on

the tree and lattice synthetic graphs with an input constraint of 3 and an

output constraint of 2. There were 20 test cases for each type of syntectic

graph. Figure 6.12 shows the relative performance on tree synthetic graphs

from close to the x-axis. It is clear that the algorithms presented in this chapter

consistently perform best. The split algorithm suffers greatly on tree based

input and is inferior to the exhaustive algorithm in this situation.

6.6.3 Analysis of algorithmic factors influencing performance

In this section the relative performance of each algorithm is examined in detail

and the cases in which performance suffers are isolated.

After close examination of the results it becomes clear that (unlike algo-

rithms such as split and exhaustive) the internal structure of a test DAG has

little effect on the time-per-convex-set results of the Ω family of algorithms.
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Figure 6.10 Performance on the synthetic lattice DAG under I/O constraints

Figure 6.11 Performance on the synthetic tree DAG under I/O constraints
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Figure 6.12 Performance on the synthetic tree DAG under I/O constraints
(Viewed from close to x-axis)

Figure 6.13 The relationship between time-per-convex-set and the ratio of in-
puts to outputs for Ωcount
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However, other factors can influence the efficient running of these algo-

rithms. Figure 6.13 shows the relation between time-per-convex-set and the

ratio of inputs to outputs for all test cases involving Ωcount. There is an obvious

correlation between these factors —Ωcount is most efficient for I/O constraints

such as 4/1 and 7/2, but suffers greatly when give I/O constraints such as 4/3

and 5/4. This inefficiency stems from the fact that Ωcount enumerates all out-

puts sets even if they are unlikely to contain any valid convex vertex sets. In

the case where the I/O constraints are 5/4, there are a very small number of

valid convex vertex sets that have 4 outputs and only 5 inputs in real examples.

As the I/O ratio decreases the output enumeration phase of the algorithm

tends to dominate its running time because all output sets are enumerated.

Table 6.8 shows some results of running the Ω family of algorithms against

split and exhaustive in the highly unusual case where there is a tighter input

constraint than output constraint. The results in Table 6.8 show that all of the

Ω family suffer greatly under these constraints, particularly Ωcount. But, it is

difficult to think of an architecture that allows more register writes than reads,

and it is just as challenging to think of an application that would require such

constraints.

6.7 Summary

This chapter has presented four algorithms that use varying degrees of so-

phistication to enumerate convex vertex sets efficiently under I/O constraints.

An algorithm for enumerating convex vertex sets subject to output constraints,

outAlgorithm, was presented. In addition to its individual usefulness, it formed

the basis for the rest of the algorithms in the chapter.

A fast algorithm, Ωcount, that used an external input check to prune the

search space and achieve polynomial complexity was presented. Experiments
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Input and I/O Convex Time Time Time Time Time
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

bf

2/1 482 0.04 2.78 0.01 0.02 0.01

467(134)

4/1 1,920 0.07 15.71 0.01 0.03 0.04
6/1 7,669 0.11 34.61 0.03 0.16 0.17
3/2 7,831 0.35 91.51 0.09 0.15 0.15
5/2 40,714 0.79 352.95 0.32 0.92 0.92
7/2 161,234 1.70 790.80 0.81 4.38 4.40
4/3 105,599 2.31 DNF 1.28 2.76 2.81
6/3 570,197 7.02 DNF 4.08 14.56 14.57

cjpeg

2/1 406 0.02 0.10 0.00 0.00 0.00

152(34)

4/1 544 0.02 0.10 0.00 0.00 0.00
6/1 550 0.01 0.11 0.00 0.00 0.00
3/2 41,363 0.61 13.86 0.08 0.30 0.28
5/2 113,611 0.82 19.30 0.14 0.59 1.02
7/2 140,335 0.94 20.15 0.18 0.89 1.53
4/3 2,201,568 20.50 DNF 7.24 22.22 18.78

rijndael

2/1 1,241 2.79 51.43 0.04 0.04 0.05

1,237(391)

4/1 4,787 3.51 253.30 0.05 0.16 0.17
6/1 15,236 4.09 DNF 0.10 0.61 0.59
3/2 75,241 83.96 DNF 3.15 4.36 3.98
5/2 648,748 201.41 DNF 7.95 26.54 23.88

sha

2/1 1,546 3.76 DNF 0.11 0.10 0.13

1,811(351)

4/1 4,372 4.23 DNF 0.13 0.28 0.24
6/1 10,152 5.30 DNF 0.17 0.53 0.49
3/2 78,132 85.14 DNF 5.06 7.15 6.75
5/2 293,259 164.97 DNF 6.28 15.82 15.37

md5
4/1 2,304 1.66 DNF 0.04 0.06 0.08

1,170(353)
6/1 3,546 1.70 DNF 0.04 0.12 0.12
3/2 54,476 51.45 DNF 2.41 3.89 3.24

Table 6.2 Results for timings on PY04 dataset
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Input and I/O Convex Calls Calls Calls Calls Calls
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

bf

2/1 482 24,009 796,775 4,741 1,279 631

467(134)

4/1 1,920 34,084 4,467,923 21,697 5,155 3,507
6/1 7,669 55,374 9816,778 43,851 23,325 15,005
3/2 7,831 176,631 25,169,197 103,202 23,588 12,302
5/2 40,714 383,570 101,091,122 437,948 109,530 75,376
7/2 161,234 814,515 216,584,931 997,284 455,042 316,386
4/3 105,599 1,122,520 DNF 1,437,265 330,171 189,037
6/3 570,197 3,342,391 DNF 5,188,167 1,613,829 1,085,505

cjpeg

2/1 406 21,907 61,832 886 854 694

152(34)

4/1 544 22,003 70,216 982 982 970
6/1 550 22,003 70,216 982 982 982
3/2 41,363 677,813 9,880,064 178,877 158,617 76,907
5/2 113611 875,155 13,460,590 259,413 254,191 220,999
7/2 140,335 896,688 13,721,462 284,323 283,435 274,377
4/3 2,201,568 18,454,621 DNF 15,984,520 11,367,292 4,238,390

rijndael

2/1 1,241 697,778 5,473,096 10,818 3,358 1,636

1,237(391)

4/1 4,787 786,732 27,471,175 33,224 13,598 8,728
6/1 15,236 878,083 DNF 74,310 44,712 29,626
3/2 75,241 11,575,641 DNF 1,769,119 309,567 145,477
5/2 64,8748 31,777,459 DNF 6,971,175 2,098,957 1,207,733

sha

2/1 1,546 300,752 DNF 10,996 3,710 1,632

1,811(351)

4/1 4,372 345,994 DNF 25,052 1,0670 7,284
6/1 10,152 432,350 DNF 45,334 26,918 18,844
3/2 78,129 6,450,724 DNF 742,919 227,341 117,159
5/2 293,259 12,652,418 DNF 1,809,397 743,945 494,507

md5
3/2 54,476 6,109,809 DNF 377,805 169,387 102,389

1,170(353)
5/2 223,820 19,633,660 DNF 679,985 489,809 360,717
7/2 377,943 20,557,975 DNF 927,173 772,545 668,729

Table 6.3 Results for recursive calls on PY04 dataset
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Input and I/0 Convex Time Time Time Time Time
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

cjpeg2+
3/2 53,175 1.40 26.71 0.09 0.38 0.34

183(31)
5/2 116,784 1.63 27.98 0.14 0.53 0.83
7/2 119,477 1.71 27.10 0.14 0.52 0.87
4/3 3,210,234 42.30 DNF 7.03 35.84 25.71

cjpeg5+

4/1 514 0.04 0.18 0.00 0.00 0.00

191(39)

6/1 514 0.03 0.18 0.00 0.00 0.01
3/2 50,938 1.45 27.69 0.10 0.38 0.33
5/2 113,874 1.69 28.02 0.13 0.52 0.82
7/2 116,576 1.70 28.82 0.14 0.54 0.86
4/3 2,971,403 42.90 DNF 6.95 34.16 24.46

rijndael1+ 2/1 2,887 4.51 DNF 0.05 0.10 0.09
1,299(86) 6/1 46,436 6.72 DNF 0.22 1.38 1.40

susan1+

2/1 165 0.01 0.19 0.00 0.01 0.00

139(35)

4/1 386 0.01 1.29 0.00 0.01 0.00
3/2 7,046 0.18 9.03 0.01 0.06 0.05
5/2 17,871 0.27 53.95 0.05 0.20 0.29
7/2 64,673 0.41 271.60 0.22 0.83 1.31
4/3 192,628 2.44 212.22 0.44 1.19 1.33
6/3 476,504 4.10 1034.98 1.23 4.13 6.14
8/3 1,642,247 7.79 DNF 5.09 16.73 28.3

susan2+

2/1 333 0.06 2.91 0.00 0.01 0.01

234(31)

4/1 968 0.08 39.48 0.01 0.04 0.07
6/1 5,894 0.14 375.16 0.06 0.21 0.42
3/2 26,303 2.36 DNF 0.17 0.43 0.52
5/2 96,784 4.94 DNF 1.17 2.53 4.34
7/2 732,530 11.05 DNF 7.81 14.66 29.32
4/3 1,380,507 67.20 DNF 10.78 16.47 19.21

gsm2+

2/1 1,143 0.19 2.96 0.01 0.24 0.16

336(57)

4/1 8,792 0.36 24.59 0.06 1.76 1.42
6/1 64,829 2.10 184.35 0.55 11.98 10.29
3/2 77,569 10.32 200.57 0.65 10.14 7.62
5/2 658,818 30.83 DNF 4.41 82.09 68.91

gsm3+
2/1 908 0.70 33.54 0.01 0.02 0.01

475(72)
4/1 6,365 0.86 575.49 0.06 0.13 0.13
6/1 68,324 1.88 DNF 0.47 1.37 1.38
3/2 215,817 78.59 DNF 1.97 4.22 3.29

gsm4+

6/1 196 0.01 0.03 0.00 0.00 0.00

117(35)

3/2 7,705 0.13 0.76 0.01 0.03 0.03
5/2 9,248 0.13 0.79 0.01 0.03 0.04
7/2 10,455 0.14 0.81 0.01 0.04 0.06
4/3 275,531 2.66 18.92 0.30 0.96 1.31
6/3 324,857 2.77 18.99 0.34 1.18 1.64
8/3 357,348 2.82 19.65 0.36 1.37 2.02

gsm5+
2/1 2,021 0.30 7.58 0.00 0.02 0.02

429(41)
4/1 7,923 0.32 12.52 0.02 0.07 0.09
6/1 7,923 0.30 12.98 0.02 0.08 0.11
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Input and I/0 Convex Calls Calls Calls Calls Calls
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

cjpeg2+
3/2 53,169 1,763,875 12,673,782 148,483 184,222 97,860

183(31)
5/2 116,784 1,997,568 13,040,760 226,846 229,500 224,114
7/2 119,477 1,999,888 13,040,760 229,500 229,500 229,500
4/3 3,210,234 44,299,122 DNF 12,928,052 15,134,145 6,157,303

cjpeg5+

4/1 514 47,986 83,764 876 876 876

191(39)

6/1 514 47,986 83,764 876 876 876
3/2 50,938 1,799,277 13,305,021 143,321 178,612 93,424
5/2 113,874 2,042,102 13,720,107 220,992 223,646 218,260
7/2 116,567 2,044,422 13,720,107 223,646 223,646 223,646
4/3 2,971,403 44,500,213 DNF 12,169,650 14,208,292 5,683,704

rijndael1+ 4/1 9,557 1,021,462 DNF 46,292 24,541 17,901
1,299(86) 6/1 46,436 1,190,680 DNF 139,196 114,733 91,659

susan1+

2/1 165 16,994 124,304 555 290 226

139(35)

4/1 386 18,347 856,933 2,208 892 668
3/2 7,046 254,135 5,924,234 25,865 13,783 11,457
5/2 17,871 328,750 34,678,943 98,204 40,165 32,585
7/2 64,673 445,761 166,259,927 390,607 152,065 126,151
4/3 192,628 2,855,889 134,689,437 708,890 390,431 345,401
6/3 476,504 4,306,382 643,018,370 2,446,025 1,030,261 897,609
8/3 1,642,247 6,924,579 DNF 9,240,739 3,636,485 3,227,717

susan2+

2/1 333 51,576 1,203,143 2,086 573 463

234(31)

4/1 968 61,022 16,083,406 14,446 2,283 1,733
6/1 5,894 87,365 151,318,756 88,949 14,187 11,585
3/2 26,303 1,666,852 DNF 245,182 50,306 42,854
5/2 96,784 2,730,585 DNF 1,948,384 221,910 182,188
7/2 732,530 5,473,593 DNF 12,115,784 1,628,700 1,453,606
4/3 1,380,507 38,976,354 DNF 16,435,288 2,725,819 2,467,005

gsm2+

2/1 1,143 94,401 996,324 7,526 2,957 2,007

336(57)

4/1 8,792 155,327 8,303,029 54,853 23,347 17,305
6/1 64,829 744,073 61,285,858 405,121 173,269 129,379
3/2 77,569 4201,325 64,460,499 567,671 208,008 140,888
5/2 658,818 9,917,960 DNF 4,185,076 1,752,838 1,299,904

gsm3+
2/1 908 405,293 6,482,306 4,278 2,035 1,413

475(72)
4/1 6,365 484,260 109,583,305 58,610 22,593 12,327
6/1 68,324 918,285 DNF 485,600 226,243 136,245
3/2 215,817 39,178,348 DNF 2,071,958 663,947 382,023

gsm4+

6/1 196 13,054 28,321 331 330 310

117(35)

3/2 7,705 252,571 745,155 14,108 13,524 12,856
5/2 9,248 255,480 780,160 16,863 16,412 15,872
7/2 10,455 257,343 801,833 18,990 1,8646 18,248
4/3 275,531 3,863,747 17,078,742 537,552 516,631 500,037
6/3 324,857 3,943,215 17,820,664 621,799 606,953 596,661
8/3 357,348 3,992,122 18,262,773 676,168 666,275 660,659

gsm5+
2/1 2,021 242,704 2,013,750 7,576 7,532 3,654

429(41)
4/1 7,923 250,665 3,282,024 15,458 15,458 15,458
6/1 7,923 250,665 3,282,024 15,458 15,458 15,458
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Input and I/O Convex Time Time Time Time Time
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

aes1

3/2 483 0.00 0.01 0.00 0.00 0.00

35(9)

4/3 1,895 0.00 0.02 0.01 0.01 0.00
6/3 5,981 0.01 0.04 0.01 0.02 0.04
8/3 15,477 0.02 0.07 0.01 0.05 0.12
5/4 5,141 0.01 0.04 0.01 0.02 0.03
7/4 13,089 0.03 0.07 0.02 0.04 0.09
9/4 19,425 0.03 0.07 0.02 0.07 0.14
6/5 9,899 0.01 0.06 0.01 0.03 0.05
8/5 21,705 0.04 0.07 0.02 0.07 0.15

10/5 21,705 0.04 DNF 0.02 0.07 0.15

bf enc0

2/1 170 0.00 0.02 0.00 0.00 0.00

137(42)

4/1 170 0.01 0.02 0.00 0.00 0.00
6/1 170 0.00 0.02 0.00 0.00 0.00
3/2 9,728 0.18 0.81 0.01 0.03 0.04
5/2 9,728 0.18 0.78 0.01 0.03 0.04
7/2 9,728 0.19 0.79 0.02 0.03 0.04
4/3 325,892 3.52 20.21 0.39 1.17 1.44
6/3 325,892 3.46 20.03 0.39 1.17 1.46
8/3 325,892 3.45 19.66 0.39 1.18 1.46

aesSort
2/1 2,817 0.86 102.17 0.04 0.06 0.05

885(102)
4/1 30,729 1.30 299.26 0.13 0.44 0.53
6/1 56,709 1.46 312.66 0.16 0.84 1.06
3/2 696,889 37.20 DNF 8.66 10.72 10.40

sha0

2/1 1,776 0.13 57.11 0.04 0.07 0.06

1,049(18)

4/1 4,443 0.15 95.49 0.05 0.11 0.10
6/1 8,644 0.17 93.44 0.06 0.16 0.16
3/2 28,255 1.08 DNF 0.43 0.82 0.69
5/2 94,373 1.73 DNF 0.66 1.96 1.79
7/2 203,711 2.57 DNF 0.98 3.53 3.73
4/3 246,533 4.59 DNF 2.93 6.82 5.37
6/3 881,147 11.17 DNF 5.37 19.99 16.98

Table 6.6 Results for timings on CMS07 dataset
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Input and I/O Convex Calls Calls Calls Calls Calls
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

aes1

3/2 483 1,864 25,462 2,776 1,036 832

35(9)

4/3 1,895 4,735 66,064 9,597 4,067 3,425
6/3 5,981 10,845 131,396 22,653 12,725 11,597
8/3 15,477 24,719 173,780 30,589 30,589 30,589
5/4 5,141 9,936 123,226 20,490 10,670 9,602
7/4 13,089 21,452 195,478 38,170 26,554 25,498
9/4 19,425 30,798 209,734 38,170 38,170 38,170
6/5 9,899 16,875 177,780 33,561 20,303 18,845
8/5 21,705 34,071 227,904 42,457 42,457 42,457

10/5 21,705 34,071 DNF 42,457 42,457 42,457

bf enc0

2/1 170 14,487 19,848 245 245 245

137(42)

4/1 170 14,487 19,848 245 245 245
6/1 170 14,487 19,848 245 245 245
3/2 9,728 326,718 747,585 15,980 15,980 15,980
5/2 9,728 326,718 747,585 15,980 15,980 15,980
7/2 9,728 326,718 747,585 15,980 15,980 15,980
4/3 325,892 53,376,20 18,400,185 575,631 575,631 575,631
6/3 325,892 5,337,620 18,400,185 575,631 575,631 575,631
8/3 325,892 53,376,20 18,400,185 575,631 575,631 575,631

aesSort
2/1 2,817 259,820 15,400,057 35,761 5,139 4,851

885(102)
4/1 30,729 385,700 47,901,517 109,539 61,057 60,675
6/1 56,709 438,456 48,308,541 112,635 112,635 112,635
3/2 696,889 10,288,513 DNF 11,499,177 1,566,061 1,332,655

sha0

2/1 1,776 43,785 5,771,899 7,667 3,847 2,521

1049(18)

4/1 4,443 52,815 9,330,259 14,773 10,759 7,855
6/1 8,644 60,122 9,455,447 18,309 17,715 16,257
3/2 28,255 290,713 DNF 160,972 80,484 46,736
5/2 94,373 506,763 DNF 345,424 245,470 175,214
7/2 203,711 739,287 DNF 50,2984 455,982 393,734
4/3 246,533 1,430,343 DNF 1,442,694 761,928 438,068
6/3 881,147 3,372,142 DNF 3,331,460 2,395,740 1,688,330

Table 6.7 Results for recursive calls on CMS07 dataset
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Input and I/O Convex Time Time Time Time Time
vertices sets split exhaustive Ωcount Ωpaths Ωsplitting

(forbidden)

bf enc0
1/3 832 0.01 0.94 0.21 0.25 0.26

137(42)
1/4 1,216 0.02 2.38 3.30 4.24 4.27
2/5 235,004 1.16 DNF 49.48 56.63 58.46

aesSort 1/2 4,605 1.48 DNF 1.43 1.23 1.15
885(102) 1/3 12,925 2.40 DNF 50.31 43.78 43.46

sha0 1/2 1,545 0.20 484.24 0.31 0.40 0.38
1,049(18) 1/3 2,211 0.16 1438.44 1.74 2.18 2.13

Table 6.8 Results for unusual I/O constraints on CMS07 dataset

showed that Ωcount takes considerably less time to enumerate convex vertex sets

under I/O constraints.

To solve the problem of the Ωcount algorithm chasing down ‘blind alleys’,

the Ωpaths algorithm, based on the concept of flows in networks, was presented,

which traded greater computational overhead for a more efficient pruning cri-

terion.

This flow based approach was further refined to find Ωsplitting, which used

S and T sets to precisely direct the search. The Ωsplitting algorithm has the

property that each leaf in its call trees will be a valid convex vertex set.

The experiments performed for this chapter indicated that Ωcount was the

fastest performing algorithm in the general case, although both the Ωpaths, and

Ωsplitting algorithms achieved significantly lower numbers of recursive calls.



Chapter 7

Detailed analysis of the union algorithm

The union algorithm [YM04] was published in 2004 as an alternative approach

to the method introduced by [API03]. It is notable for being the first method

to enumerate only connected convex vertex sets.

This chapter examines the model, completeness, and efficiency of the union

algorithm [YM04, YM08, YM07]. An overview of the algorithm is given, fol-

lowed by a discussion of the correctness of the algorithm as originally published.

The chapter concludes by examining the experimental setup used in [YM04,

YM08, YM07]. For this part of our work we must give credit to one of the

authors of [YM04] who was kind enough to send us the original input DAGs

used in [YM04]. Without his co-operation, much of this work would not have

been possible.

7.1 Overview of the algorithm

The union algorithm uses the notion of upward and downward cones (see Sec-

tion 4.6) to search for all the connected convex vertex sets in a DAG, and it

focuses heavily on satisfying I/O conditions. The union algorithm uses these

cheaply computable cones by combining them to produced all connected con-

vex vertex sets in a DAG. It is claimed to be exhaustive on connected convex

sets and the published results show large improvements over the exhaustive
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algorithm.

The approach has been updated by [YM08, YM07] and extended to also

enumerate disconnected convex vertex sets by combining existing sets. This

chapter examines only the enumeration of connected convex vertex sets.

Although it has been cited in many publications, to our knowledge the

union algorithm has only been implemented by one other research group for

comparison purposes. In [CMS07] the union algorithm was tested against the

exhaustive and split algorithms [PAI06, CMS07]. In that publication it was

shown that, contrary to the results in [YM04], the union algorithm did not

perform as well on commercially representative benchmarks as exhaustive.

7.1.1 Operation of the union algorithm

The union algorithm proceeds in two phases. In the first phase, all convex

upward and downward cones of vertices in D are calculated. In the second

phase these cones are combined together to form the set Sc(D). The second

phase is the most complex and will be examined in detail.

Proofs given in [YM07] show that every convex connected vertex set can be

formed from one or more cones present in D.

The connected convex vertex sets are enumerated by the recursive function

unionRecursive(), which is shown in detail in Algorithm 29. Algorithm 30

shows the union algorithm as it was first presented. The original formation is

given to ensure that no detail is lost in translation.

The unionRecursive() function is passed a connected convex vertex set, A,

and a set A ⊆ Sc(DA) that returns the set of connected convex vertex sets that

can be formed by the union of an element of A and an element of S(DV (D)−A).

If a is the topologically first vertex in D, then unionRecursive({a}, {{a}},D, down)

will return the set of connected convex sets in D that contain a. By deleting a

and repeating the process all connected convex vertex sets in D can be found.
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7.1.2 Functions used by the union algorithm

For a vertex s in the DAG D, the union algorithm defines the maximum

upward cone of s as the set formed from the vertices that are present in

at least one upward cone of s. Similarly, the maximum downward cone is

the set formed from the vertices that are present in at least one downward

cone of s. Recall from Chapter 2 that this is equivalent to the definitions of

dom(s,D) and domBy(s,D), however in this chapter we shall use the functions

MAX UP (s,D) and MAX DOWN(s,D).

The function upCones(a,D), returns the set of upward cones rooted at

the vertex a in D. Likewise the function downCones(a,D) returns the set of

downward cones rooted at the vertex a in D.

7.1.3 The operation of unionRecursive() function

The unionRecursive() function operates in either upwards or downwards mode,

its functionality in downwards mode is described here, the upwards mode is

analogous.

Firstly, the recursive function finds all extension points of the set A. A

downwards extension point e of a set A is a vertex in A that has an edge to a

vertex f 6∈ A.

Given a set of extension points the unionRecursive() recursive function

forms the set B, which contains all combinations of such extension points.

For each combination of extension points Bi, the union() recursive function

forms the set Ai from all the convex vertex sets in A that include exactly those

extension points.

If there are k combinations of extension points then the sets A1, . . . ,Ak

form a partition of A.

The union() recursive function then creates the set A+
i , such that A+

i =

A∪dom(Bi,D), and the set Di, that contains all the connected convex sets that
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Sets

{8}
{8,5}
{8,5,7}
{8,5,7,4}
{8,5,7,4,6}
{8,5,7,4,6,2}
{8,5,7,4,6,2,3}
{8,5,7,4,2}
{8,5,7,4,2,3}

Table 7.1 Connected convex vertex sets that contain vertex 8, obtained from
Example 22

can be formed from a union of an element of Ai and an element of S(A+
i \ Ai.

The union() function then makes the recursive call union(A+
i ,Di,D, !direction)

and repeats the process for each combination of extension points.

I/O constraints

Whenever a set Di is created, each set added to it must be first checked for

convexity and I/O constraints, if any check is failed, then the set is pruned.

[YM04] provides a proof that this pruning does not prevent the union algorithm

for enumerating all valid connected convex sets.

7.1.4 Example

The following section walks through the operation of the union algorithm on

Example 22. For conciseness we shown only the first iteration of the algorithm:

the process of finding all connected convex vertex sets that include the vertex

8. For simplicity we also ignore I/O constraints. The connected convex vertex

sets that include the vertex 8 are shown in Table 7.1.

Walkthrough

We enter unionRecursive({5, 8}, {{8}, {5, 8}}, D).
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Algorithm 29 union(D): enumeating connected convex vertex sets by com-
bining cones

union(D)
{
∀a ∈ V (D)(in topological order)
{

store unionRecurisve({a}, {{a}},D, down)
delete a from D

}
}

unionRecursive(region, currentSets,D, direction)
{

extensionPoints← {a|a ∈ region, ((v, a) ∈ E(D)||(a, v) ∈ E(D)), v 6∈ region}
Let B be the set of all combinations of extensionPoints
tempSets← currentSets
∀B ∈ B
{
A ← {A|A ∈ currentSets,A ∩ extensionPoints = B}
Let B ← {b1 . . . bi}
if direction = down
{

Let D ← (A× downCones(b1)× . . . × downCones(bi)) \ currentSets
Let E ← region ∪maxDownCone(b1) ∪ . . . ∪maxDownCone(bi)

}
else
{

Let D ← (A× upCones(b1)× . . .× upCones(bi)) \ currentSets
Let E ← region ∪maxUpCone(b1) ∪ . . . ∪maxUpCone(bi)

}
tempSets← tempsets ∪ unionRecursive(E,D,D, !direction)

}
return tempsets
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Algorithm 30 algorithm(): the union algorithm as it was originally presented
in [YM04]

algorithm()
begin

for all vertices v of R in reverse topological order do

PATTERNS(v) := UC SET(v);
ext:= OUT(MAX UC(v,R));
if ext 6= ∅ then

PATTERNS(v) := UNION(PATTERNS(v),ext,down);
remove v from R;

end

end

UNION(core,ext,direction)
begin

new core:=core;
Let ext = {v1, . . . , vk};
for i = 1 to k do

for j = 1 to (
k

i
)do

Let V = {vx1
, . . . , vxi

} be the jth combination of extension points;
P := {p|p ∈ core

V

p ⊆
V

p ∩ (ext − V ) = ∅};
if direction = down then

tmp := DC SET (vx1
) × . . . × DC SET (vxi

) × P ;
else

tmp := UC SET (vx1
) × . . . × UC SET (vxi

) × P ;
end

tempcore := ∅
for each t ∈ tmp do

Let t = {pat1, . . . , pati+1};
pat := pat1 ∪ . . . ∪ pati+1;
if (direction = down)

V

CONVEX(pat)
V

OUT CHECK(pat) then

tmp core := temp core ∪ {pat};
if (direction = up)

V

CONVEX(pat)
V

IN CHECK(pat) then

tmp core := temp core ∪ {pat};
end

if direction = down then

tmp ext :=
S

vxi

IN(MAX UC(vxi
, R)

else

tmp ext :=
S

vxi

OUT (MAX DC(vxi
, R)

end

tmp ext := REMOV E EXT (tmp ext ∩ {vertices present in new core});
if tmp ext 6= ∅then

new core := new core ∪ UNION(tmp core, tmpext, !direction);
else

new core := new core ∪ tmp core;
end

end

end

new core := {p|p ∈ newcore
V

IN CHECK(p)
V

OUT CHECK(p)};
return new core;

end
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Example 22: Showing the functionality of the union algorithm

b1 The direction is downwards and the only extension point is 5, so there is

only one combination.

b2 Let B1 = {5}, and A1 = {{8, 5}}. Then A+
1 = {8, 5, 7} and D1 = {8, 5,

7}.

b3 We make the recursive call unionRecursive({8, 5, 7}, {{8, 5, 7}}, D).

c1 The direction is upwards and the only extension point is 7 so there

is again only one combination.

c2 Let B1 = {7}, and A1 = {{8, 5, 7}}. Then A+
1 = {8, 5, 7, 4, 2} and

D1 = {{8, 5, 7, 4}, {8, 5, 7, 4, 2}}.

c3 We make the recursive call unionRecursive({8, 5, 7, 4, 2}, {{8, 5,

7, 4}, {8, 5, 7, 4, 2}}, D)

d1 The direction is downwards are there are two extension points

{2, 4}, we consider first the extension point 2.

d2 Let B1 = {2}, and A1 = ∅. A1 is empty, so there is no recursion.

d3 Let B2 = {4}, and A2 = {{8, 5, 7, 4}}. Then A+
2 = {8, 7, 5, 4,

2, 6} and D2 = {{8, 5, 7, 4, 6}}.

d4 We make the recursive call unionRecursive({8, 7, 5, 4, 2, 6},

{{8, 5, 7, 4, 6}}, D).

e1 There are no new extension points so terminate and return

{{8, 5, 7, 4, 6}}.
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d5 tempSets becomes {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5, 7, 4, 6}}.

d6 Let B3 = {2, 4}, and A3 = {{8, 5, 7, 4, 2}}. Then A+
3 = {8, 5,

7, 4, 2, 6, 3} and D3 = {{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8,

5, 7, 4, 2, 6, 3}}.

d7 We make the recursive call unionRecursive({8, 5, 7, 4, 2, 6, 3},

{{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}, D).

f1 There are no new extension points so terminate and return

{{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

d5 tempSets becomes {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5, 7, 4, 6},

{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}

d6 Terminate and return {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5, 7, 4,

6}, {8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

c4 Terminate and return {{8, 5, 7}, {8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5,

7, 4, 6}, {8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

b4 Terminate and return {{8}, {8, 5}, {8, 5, 7}, {8, 5, 7, 4}, {8, 5, 7, 4, 2},

{8, 5, 7, 4, 6}, {8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

When all instances of the recursive function unionRecursive() have termi-

nated, we have the sets {8}, {8, 5}, {8, 5, 7}, {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8,

5, 7, 4, 6}, {8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}, which are

all of the connected convex sets involving vertex 8.

7.2 Issues with the union algorithm

This section presents a number of issues with the union algorithm, these include

problems with the correctness, the model used for I/O constraints, and the

experimental setup.
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7.2.1 Typographical

A minor issue, included here for completeness, is that the union algorithm in

Algorithm 30 (taken from [YM04]) appears to contain a typographical error at:

if direction = down then

tmpext :=
⋃

vxi
IN(MAX UC(vxi

, R)

else

tmpext :=
⋃

vxi
OUT (MAX DC(vxi

, R)

end

It is the understanding of the author that this should be:

if direction = down then

tmpext :=
⋃

vxi
OUT (MAX UC(vxi

, R)

else

tmpext :=
⋃

vxi
IN(MAX DC(vxi

, R)

end

because, by definition, upward cones have no inward edges and downward

cones have no outward edges. This error has been corrected in [YM08].

7.2.2 Correctness

The number of recursive calls made by the union algorithm can grow quickly

because the recursive function of the union algorithm must make a recursive

call for each possible combination of extension points. Moreover, it can result

in the same set being created repeatedly. For the union algorithm to be com-

petitive over reasonably sized examples, the number of duplicated sets that are

constructed must be reduced.
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The union algorithm attempts to avoid this computational explosion by

eliminating extension points that will not result in the identification of any

new connected convex vertex sets. The published algorithm defines a function

REMOVE EXT() that, when given a set of extension points, will eliminate

extension points that match any of the following criteria.

⋄ If at least one of the outgoing edges of an extension point e does not lead

to a vertex with a valid set of cones (i.e a vertex in the DAG, rather than

a forbidden vertex), then e can be eliminated.

⋄ Given two downward extension points u and v, if MAX−DOWN(u,D) ⊆

MAX −DOWN(v,D), then u can be eliminated. The reverse is true for

upward extension points.

⋄ If an extension point has already been considered by a recursive ancestor,

then it can be eliminated.

If extension points are eliminated, then the number of combinations of ex-

tension points is greatly reduced. This modification allows a large speedup of

the union algorithm. However, there is a weakness with the REMOVE EXT

function that causes some valid connected convex sets to be missed by the

enumeration process.

The authors of [YM04] provided a proof that their algorithm generates all

connected convex vertex sets by proving the algorithm in the trivial case, and

then proving that pruning convex vertex sets based on convexity, input and

output constraints is safe.

However, the proof does not show that the actions of the REMOVE EXT

function are safe, possibly because it is the result of optimising work performed

after the algorithm was proved correct. The author believes that the algorithm

is correct if this function is omitted. We now go on to discuss the correctness

of this function by means of an example.
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REMOVE EXT example

Consider Example 22, which was used to shown the operation of the union

algorithm in Section 7.1.4. This section performs the walkthrough again, under

the same conditions, but this time eliminating the extension points using a fully

operational REMOVE EXT function.

Walkthrough with REMOVE EXT

We call unionRecursive({5, 8}, {{8}, {5, 8}}, D).

b1 The direction is downwards and the only extension point is 5, so there is

only one combination.

b2 Let B1 = {5}, and A1 = {{8, 5}}. Then A+
1 = {8, 5, 7} and D1 = {8, 5,

7}.

b3 We make the recursive call unionRecursive({8, 5, 7}, {{8, 5, 7}}, D).

c1 The direction is upwards and the only extension point is 7 so there

is again only one combination.

c2 Let B1 = {7}, and A1 = {{8, 5, 7}}. Then A+
1 = {8, 5, 7, 4, 2} and

D1 = {{8, 5, 7, 4}, {8, 5, 7, 4, 2}}.

c3 We make the recursive call unionRecursive({8, 5, 7, 4, 2}, {{8, 5,

7, 4}, {8, 5, 7, 4, 2}}, D)

d1 The direction is downwards are there are two extension points

{2, 4}, The REMOVE EXT eliminates extension point 4 by cri-

teria 2.

d2 Let B1 = {2}, and A1 = {{8, 5, 7, 4, 2}}. Then A+
1 = {8, 5, 7,

4, 2, 6, 3} and D1 = {{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5,

7, 4, 2, 6, 3}}.
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d7 We make the recursive call unionRecursive({8, 5, 7, 4, 2, 6, 3},

{{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}},D).

f1 There are no new extension points so terminate and return

{{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

d5 tempSets becomes {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5, 7, 4, 2,

6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

d6 Terminate and return {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {8, 5, 7, 4, 2,

6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

c4 Terminate and return {8, 5, 7}, {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {{8, 5,

7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

b4 Terminate and return {8}, {8, 5}, {8, 5, 7}, {{8, 5, 7, 4}, {8, 5, 7, 4, 2},

{{8, 5, 7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}}.

When all instances of the recursive function unionRecursive() have termi-

nated, we have the sets {8}, {8, 5}, {8, 5, 7}, {{8, 5, 7, 4}, {8, 5, 7, 4, 2}, {{8, 5,

7, 4, 2, 6}, {8, 5, 7, 4, 2, 3}, {8, 5, 7, 4, 2, 6, 3}. The use of the REMOVE EXT

function has caused the union algorithm to ignore the valid set {8, 5, 7, 4, 6}.

The operation of the two walkthoughs are the same until d1. At that point,

there are two extension points 2 and 4. Extension point 4 is eliminated because

the maximum downward cone of 4 is a subset of the maximum downward cone

of 2. This prevents the connected convex set {8, 5, 7, 4, 6} from being found.

Fix for REMOVE EXT

We discussed this observation with the authors of [YM04]. This excerpt [YM06]

from the correspondence is significant.

The fault part is in the description of the ELIMI EXT function,

the second point of the three: “Given two extension points u and

v, if MAX DC(u, R) ⊂ MAXDC(v,R), then u can be eliminated
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from further consideration.”. It should be “for downward exten-

sion points u and v, if u ∈ predecessors(v), an extension vertex

combination is redundant if it contains u but not v.” It is actually

the extension vertices combination that UNION would further re-

cursively dive into that has been eliminated, but not the extension

vertex itself as described wrongly in the paper.

This correspondence predates the updated version of the algorithm that

was given in [YM08]. In [YM08] the extension point criterion has been changed

accordingly.

7.2.3 Input constraints

The union algorithm uses an unusual formulation for its I/O criteria. Instead

of counting the number of register reads and writes that a custom instruction

requires, the union algorithm counts the number of operands to the instruc-

tion. For example, consider a candidate instruction C that is equivalent to the

following assembler code.

addiu $2,$3,8

addu $5,$3,$5

sll $5,$3,0x2

A normal method for checking I/O constraints would find that C required

three inputs— in this example they are the registers $2, $3, $5. However, the

formulation used by the union is that operands to the instruction are counted

as inputs, so C would require five inputs— the same registers as before and

the values 8 and 0x2. However, the values 8 and 0x2 are not fetched from the

register file.

This approach makes a significant difference to the total number of con-

nected convex sets found. To illustrate this, one of the input DAGs provided
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In Out Sets in Generated
[YM04] sets

3 1 159 555
4 1 298 624
5 1 379 633
3 2 233 1,513
4 2 458 4,372
5 2 726 9,479
3 3 233 1,885
4 3 578 6,350
5 3 1,003 19,920

Table 7.2 Sets found by processing the cjpeg benchmark

by the authors of the union algorithm has been processed using ‘normal’ I/O

constraints. The input DAG used is the cjpeg benchmark from the PY04 date-

set, which has 152 vertices. The experiments in [YM04, YM08] have been

replicated to the best of our ability — in particular we have ensured that the

set of forbidden vertices is the same as used in [YM04]. In Table 7.2, the number

of connected convex sets found by using normal I/O constraints is compared

with the number of connected convex sets reported in [YM04]. There is clearly

a large difference between the number of connected convex vertex sets in the

two experiments.

All information about this test, including the input files and a list of the

convex sets found in each combination of constraints are available at [Red].

Although this form of I/O checking does not effect the core union algo-

rithm, it is an element of concern. In particular, the exhaustive algorithm1 is

at a comparative disadvantage when using this formulation because inputs that

come from immediate operands can never be part of a large candidate instruc-

tion and so the exhaustive algorithm wastes a disproportionate number of

recursive calls chasing down ‘blind alleys’.

1The 2003 version as was used in [YM04]
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Inconsistency in results

It is noticeable that for the same input files2 the union algorithm produces

slightly different numbers of valid convex sets in [YM04] and [YM08].

For example, in [YM04] there are 438 valid sets for the ‘Rinjdael’ bench-

mark with a 3/1 I/O constraint and 159 valid sets for the ‘cjpeg’ benchmark

with the same constraint, but, in [YM08] the numbers of sets are 437 and 166

respectively.

This is surprising because the union algorithm is exhaustive and should

always find the same number of connected convex sets with each execution.

7.2.4 Treatment of exhaustive algorithm

In [YM04] there is a situation where the exhaustive (which is included for

comparison purposes) algorithm processes a DAG formed from the benchmark

‘blowfish’. It is reported that when the exhaustive algorithm has I/O con-

straints of 3/1, it makes 350,120 recursive calls. However, when it has I/O

constraints of 3/2 it makes only 339,058—this is extremely surprising, espe-

cially considering the normal operation of the exhaustive algorithm.

7.3 Summary

The basic union algorithm presented in [YM04] is a provably correct exhaus-

tive enumeration algorithm for finding all connected convex vertex sets in a

given DAG. Attempts to improve the efficiency of the algorithm with the RE-

MOVE EXT function have been successful at the expense of being exhaustive.

The author has been unable to produce an implementation of union that ap-

proaches the speedups reported in [YM04]. The results published in [CMS07]

suggest that the performance of union does not compare favourably with other

methods in the area.

2We have confirmed that the input files are the same with the authors of the publication.
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Concluding remarks

In this final chapter, the work and results presented in the preceding chapters

are summarised, and some possible future research directions are examined.

8.1 Conclusions

This thesis began by discussing some of the issues facing processor designers,

and showing how automatically customised processors could provide many of

the advantages of an ASP at a fraction of the cost. A number of novel contri-

butions in the area of candidate instruction enumeration have been presented.

For example,

In Chapter 4, existing algorithms for creating a library of candidate instruc-

tions were reviewed and given a detailed analysis.

Several algorithms were presented in Chapter 5. These included algorithms

for enumerating all of the convex vertex sets and all of the connected convex

vertex sets of a DAG. Modifications that allowed these algorithms to function

efficiently under forbidden vertex constraints were then presented. These algo-

rithms possessed improved asymptotic complexities and are relatively simple to

implement.

The same chapter introduced the idea of a partial solution to the problem

of enumerating candidate instructions, potentially allowing designers to direct
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the search for candidate instructions.

The chapter concluded with a set of experiments that tested the effectiveness

of these algorithms against the current fasted algorithms. The experiments used

both real-world benchmarks and synthetic examples as their test cases.

In Chapter 6, a family of algorithms that enumerate convex sets under I/O

constraints were presented. These algorithms use varying degrees of sophistica-

tion to enumerate convex sets efficiently under I/O constraints. The algorithms

show a clear progression, trading greater computational overhead for a more ef-

ficient pruning criteria. All algorithms in the Ω family have polynomial time

complexity, and perform extremely well in our experiments. Later in the Chap-

ter, we examine a set of conditions that cause the Ω to perform less well. The

relevance and possible frequency of these conditions are analysed.

Finally, in Chapter 7, the union algorithm was examined in detail. An

overview of its use was given, followed by an example. Then a number of

problems with the contribution of the union algorithm were considered and

supported with some numerical data.

8.2 Contributions of this thesis

Notwithstanding the acknowledgement of intellectual property in Appendix C,

this section lists those elements of this thesis that the author believes are key

contributions.

⋄ The Ω family of algorithms are a novel, efficient, and elegant new approach

to enumerating convex sets under I/O constraints.

⋄ The Ψ and Φ algorithms for enumerating convex sets without I/O con-

straints are a new and important step forwards in the research area.

⋄ The use of the ‘partial solution’ approach to enumerating all convex sets

gives a great degree of flexibility to users and has the potential to be

heavily exploited by later phases of the processor customisation process.
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⋄ The detailed review of the union algorithm has identified several problems

that require attention and has provided support to the performance data

in [CMS07].

8.3 Directions for future research

Although this thesis has made a number of novel contributions, it has also

uncovered several interesting opportunities for further study.

Extension of algorithms to consider more constraints

One of the most obvious directions for future work is to examine the possibil-

ity of adding support for other, less commonly used, constraints to the suite

of algorithms that have been presented in this thesis. It would be useful to

have algorithms that could efficiently enumerate convex vertex sets, not just

by connectivity and I/O constraints, but also by total area and a single cycle

constraint.

Candidate equivalence

One of the most important areas for future research, is that of candidate equiv-

alence. It is likely that two or more of the convex sets found in the DAG

will correspond to the same candidate instruction of the DDG. This is because

each vertex represents an operation that may occur many times in a target

application,

Moreover, there are a multitude of ways that two instructions can be shown

to always compute the same output values for the same set of input values.

It is clear that there is a subset of the set of convex sets in which each can-

didate instruction features only once. This subset would be extremely valuable

because it would cut down greatly on the work that the instruction selection

phase needs to perform. Methods are required that can reliably and efficiently
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remove superfluous instructions from the library.

Instruction set selection

There is little agreement in the published literature for instruction selection

and there remains a strong sense that an ad-hoc method is independently gen-

erated for each instance of the problem. It would be useful to have a complete

and detailed review of the advantages and disadvantages of such methods and

present a framework into which they fit.

However, it is clear that instruction set selection is a small part of the

overall design of a customisable chip in the same way that register allocation is

a small part of data-flow analysis. The interaction between the different phases

of custom processor design is a fertile research area.

Relationship with optimisation and back-end code generation

As discussed in the introduction chapter, the development of automatic gener-

ation of instruction sets has only been made possible by progress in the area of

automatically generated compiler back-ends and rule-based optimisers.

Although this progress has been enough to enable functioning toolchains,

the relationships that the compiler and optimiser have with an automatic in-

struction selection mechanism are complex. Even though the instructions for a

target application must be optimised before candidate instructions are found, a

post-selection optimisation is required. This post-selection optimisation phase

allows basic blocks to be rewritten in such a way that custom instructions in-

tended for one part of the target application can be used in others.

There is clearly a cyclic dependency here—the knowledge that the target ap-

plication may be rewritten with reference to custom instructions may influence

the selection of the target instructions.
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Partial solution with human guidance

In Chapter 5 the concept of a partial solution was introduced. As discussed, a

designer may selectively expand elements of the partial solution as they choose.

Allowing a human element to select the direction of search will mean that the

resulting library will no longer be exhaustive, but it is possible that the quality

of instructions in the library will be high.

This trade off between reducing the number of instructions against the pos-

sible risk of losing good candidates and their effect on the effectiveness of the

resulting instruction set requires detailed investigation and is a fertile research

area.
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Experimental setup

This Appendix details the experimental setup used to produce the results in

this thesis. All experiments were carried out on a 2 x Dual Core AMD Opteron

265 1.8GHz processor with 4 Gb RAM, running SUSE Linux 10.2 (64 bit) and

timings were taken with reference to the machine’s internal time clock.

If experiments did not terminate within two hours, they were considered

not to finish in a reasonable amount of time.

A.1 Algorithm implementation

All algorithms featured in this work were implemented in C++ by the author.

The only exception is the split algorithm, which was implemented in C++ by

its creators. The author remains indebted to them for their extremely helpful

attitude.

All algorithms in this work that were implemented by the author have been

made available online, along with sample candidate instruction lists. Convex

sets are stored as arrays of boolean values and the DAGs are represented inter-

nally by edge lists, adjacency matrices, and reachability matrices.
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A.1.1 Special data structures

Some of the algorithms presented in this thesis require unusual data structures

to meet their asymptotic bounds.

In particular, some of our algorithms require an indexed list structure that

allows constant time lookup, insertion and deletion for a list of size v, while

also allowing iteration over the list in O(v) time.

To implement an indexed list L, we maintain arrays of integers LNEXT and

LPREV indexed from 0 to n (Recall that n is the size of the input DAG D). If

element e 6∈ L then LNEXT (e) 6= e and LPREV (e) 6= e. Locations LNEXT (0)

and LPREV (0) point to the start and end of the list respectively. We can iterate

over the elements in the list by following the chain of links from LNEXT (0)

or LPREV (0) and constant time insertion and deletion can be achieved using

functions similar to those found in a linked list.

A.1.2 The split algorithm

The C++ source code of the implementation of the split algorithm was made

available for our use by its creators. The implementation received allowed for

enumeration of connected and disconnected convex sets under I/O constraints.

The author made some modifications to the source so that it may run with all

I/O checking code removed, this way split is not disadvantaged when enumer-

ating convex sets without I/O constraints such as in Chapter 5.

A.2 Correctness of results

Extensive checks were carried out to confirm that exactly the right sets are

being enumerated, for small examples the relevant sets are worked out by hand,

and for medium sized ones the sets are compared with the sets generated by

a brute force method. When dealing with test cases that generate extremely

large numbers of sets the number of sets of each size were compared for several
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different methods. One of the algorithms used (the split) was implemented

separately by an entirely unrelated research group, so if all of the methods

generate the same number of sets of each size, then it is possible to assume

with some confidence that the convex sets found are correct.

A.3 Choice of test cases for each test

For each experiment all practical test cases were tested—results are presented

for only a subset of them. The other tests are not included because all algo-

rithms either execute too quickly to measure, or all fail to terminate due to the

size of the search space.

A.4 Test cases

Three datasets are used in our experiments, one of which was generated by the

author as detailed in Appendix B while the other two have been provided by

other research groups.

The combination of these datasets is useful for a number of reasons —firstly

because it allows direct comparison with the results published in the relevant

source (especially as there are cases where two publications directly contradict

each other), secondly it allows us to use test cases where other data-dependency

graphs have been constructed from assembler source on different processors and

under slightly different conditions.

A.4.1 PY04 dataset

This dataset was provided by the authors of [YM04] and was used in the ex-

periments included in that work. It consists of five large labelled DAGs that

are mainly used for experiments involving I/O in Chapter 6.

Like our own test cases they were generated from MiBench benchmarks

compiled for the simplescalar architecture.
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A.4.2 CMS07 dataset

This dataset was supplied by the authors of [CMS07]. They contain several

mibench benchmarks and, like the PY04 dataset, they have been unrolled to

some extent to increase the potential for efficiency improvements. The CMS07

dataset was created from code compiled for a MIPS architecture.

A.4.3 RHUL dataset

This dataset has been created in-house by the author to provide a larger range

of test cases than is provided by the PY04 and CMS07 datasets. It consists of a

large number of test cases ranging dramatically in size. The precise construction

of these test cases is detailed in Appendix B and all of the test cases within it

are available online at [Red].

A.5 Experimental comments

For some of the experiments in this thesis, the requirement that an algorithm

must store all of the convex sets in memory was removed. This was partially

because our experimental machine lacked the physical space to store all of the

convex sets but also to ensure a fair test, given that the split algorithm uses a

different storage mechanism to the other algorithms. Unless noted in the text

this requirement was only removed on those experiments processing synthetic

DAGs.

Forbidden vertices

When it is necessary to forbid some operations of a DDG, the set of operations

that are forbidden are: all memory operations, all multiply operations, and all

floating point operations.
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RHUL dataset

In this appendix a listing is given of the test cases included in the RHUL

dataset, and an overview of the creation process. The source code for these test

cases is from the Mibench benchmarking suite [GRE+01] and, unless otherwise

stated, they have been profiled using the ‘runme large’ scripts provided with

each benchmark. The information given in this chapter will allow a reader to

reconstruct the test cases.

Some of the DDG produced are from library functions rather than parts of

the benchmark source code—they are often heavily executed and are a legiti-

mate target for this work. However, care is taken that the same test case does

not appear in more than one benchmark.

Instructions for downloading benchmarks from the mibench suite can be

found in [GRE+01] and source code for the functions used to create the DAGs

can be found at [Red] along with the source code for all algorithms except split.

B.1 Test cases

In this section, a description of each test case in the RHUL dataset is given,

including the function each one was taken from. In general if bench1 is the first

test case from benchmark ‘bench’ then bench1Con will be the largest connected

region of bench1 (assuming bench1 is not a connected DAG) Similarly, bench1+
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is the DAG formed by augmenting bench1 with external inputs and outputs.

B.1.1 FFT

FFT is a benchmark that performs a set of fast Fourier transformations on an

input array.

ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

FFT2 53 57 - - vprint

FFT2Con 49 53 - - vprint

FFT2+ 72 75 33 39 vprint

FFT2Con+ 66 71 27 33 vprint

FFT3 64 74 - - fft floats

FFT3+ 82 94 33 39 fft floats

B.1.2 Patricia

The Patricia benchmark implements a radix-tree based method for storing IP

traffic data.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

patricia2 52 68 - - n/a mpn divmod

patricia2+ 66 82 26 35 mpn divmod

patricia3 54 68 - - n/a log D

patricia3+ 73 77 38 44 log D

patricia4 34 32 - - log D

patricia4Con 29 28 - - log D

patricia4+ 52 50 29 38 log D

patricia4Con+ 47 46 26 34 log D

B.1.3 Qsort

The qsort benchmark is an implementation of the well-known sorting algorithm.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

qsort1 21 18 - - word cpy

qsort1Con 17 15 - - word cpy

qsort1+ 22 20 13 21 word cpy

qsort1Con+ 20 19 11 19 word cpy

qsort2 33 33 - - qsort mem

qsort2Con 31 32 - - qsort mem

qsort2+ 40 42 19 28 qsort mem

qsort2Con+ 38 41 18 26 qsort mem

qsort3 33 33 - - qsort mem

qsort3Con 29 31 - - qsort mem

qsort3+ 40 42 20 25 qsort mem

qsort3Con+ 36 39 22 25 qsort mem

B.1.4 Dijkstra

The Dijkstra benchmark calculates the shortest path between every pair of

vertices in a (large) graph using Dijkstra’s algorithm.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

dijkstra2 19 20 - - dijkstra

dijkstra2Con 15 17 - - dijkstra

dijkstra2+ 25 26 12 17 dijkstra

dijkstra2Con+ 22 24 10 15 dijkstra

dijkstra3 34 25 - - dijkstra

dijkstra3Con 18 17 - - dijkstra

dijkstra3+ 49 40 39 44 dijkstra

dijkstra3Con+ 27 26 18 22 dijkstra

B.1.5 Cjpeg

Implementation of the standard compression algorithm. It was profiled using

the file ‘imageTest.gif’, which can be found with the rest of the project source.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

cjpeg1 43 47 - - get interlaced row

cjpeg1Con 39 44 - - get interlaced row

cjpeg1+ 65 69 27 39 get interlaced row

cjpeg1Con+ 51 56 16 28 get interlaced row

cjpeg2 161 233 - - jpeg fdct islow

cjpeg2+ 183 255 31 43 jpeg fdct islow

cjpeg3 29 26 - - start input gif

cjpeg3Con 24 22 - - start input gif

cjpeg3+ 39 36 23 32 start input gif

cjpeg3Con+ 31 30 25 32 start input gif

cjpeg4 51 49 - - forward DCT

cjpeg4Con 48 47 - - forward DCT

cjpeg4+ 62 59 23 40 forward DCT

cjpeg4Con+ 57 55 19 36 forward DCT

cjpeg5 168 237 - - jpeg fdct islow

cjpeg5+ 191 260 39 52 jpeg fdct islow

B.1.6 Blowfish

This benchmark implements the standard block-cipher algorithm. This bench-

mark is unusual in that all of the test cases come from the same function.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

bf1 18 14 - - BF cfb64 encrypt

bf1Con 15 13 - - BF cfb64 encrypt

bf1+ 29 25 17 19 BF cfb64 encrypt

bf1Con+ 25 23 9 15 BF cfb64 encrypt

bf2 32 36 - - BF cfb64 encrypt

bf2+ 40 45 17 22 BF cfb64 encrypt

bf3 337 468 - - BF cfb64 encrypt

bf3+ 346 477 14 92 BF cfb64 encrypt

bf4 34 38 - - BF cfb64 encrypt

bf4Con 31 35 - - BF cfb64 encrypt

bf4+ 45 48 14 24 BF cfb64 encrypt

bf4Con+ 36 41 8 18 BF cfb64 encrypt

B.1.7 Sha

The Sha benchmark implements the SHA secure hash algorithms for producing

message digests.

ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

sha1 16 15 - - sha transform FP8SHA INFO

sha1+ 23 22 13 17 sha transform FP8SHA INFO

sha2 38 44 - - sha transform FP8SHA INFO

sha2+ 44 50 12 28 sha transform FP8SHA INFO

sha3 46 55 - - sha transform FP8SHA INFO

sha3+ 52 61 10 31 sha transform FP8SHA INFO
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B.1.8 Rijndael

Rijndael has been selected as the Advanced Encryption Standard(AES). This

benchmark implements the encryption algorithm.

ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

rijndael1 1280 1717 - - encrypt

rijndael1+ 1299 1736 86 387 encrypt

rijndael2 89 107 - - set key

rijndael2+ 104 122 29 57 set key

rijndael3 43 51 - - fseek

rijndael3Con 39 49 - - fseek

rijndael3+ 52 60 16 22 fseek

rijndael3Con+ 46 56 11 17 fseek

rijndael4 44 52 - - encfile

rijndael4Con 39 49 - - encfile

rijndael4+ 52 60 15 26 encfile

rijndael4Con+ 45 55 10 16 encfile

B.1.9 Susan

Susan is an image recognition package It was developed for use in MRI machines

for mapping the brain.



Test cases 207

ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

susan1 112 150 - - susan corners

susan1+ 139 177 35 79 susan corners

susan2 207 287 - - susan edges

susan2+ 234 314 31 123 susan edges

susan3 40 51 - - enlarge

susan3+ 53 64 27 35 enlarge

susan4 45 51 - - median

susan4Con 38 45 - - median

susan4+ 57 63 29 42 median

susan4Con+ 48 55 24 37 median

B.1.10 GSM

The Global Standard for Mobile (GSM) communications is used for encoding

voice transmissions in Europe. This benchmark encodes data streams taken

from large speech samples.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

gsm1 25 23 - - Gsm Short Term Analysis Filter

gsm1Con 23 22 - - Gsm Short Term Analysis Filter

gsm1+ 37 35 19 23 Gsm Short Term Analysis Filter

gsm1Con+ 34 33 17 21 Gsm Short Term Analysis Filter

gsm2 328 442 - - Autocorrelation

gsm2+ 336 450 57 235 Autocorrelation

gsm3 446 641 - - Calculation of the LTP parameters

gsm3+ 475 670 73 236 Calculation of the LTP parameters

gsm4 98 108 - - RPE grid selection

gsm4+ 117 127 35 62 RPE grid selection

gsm5 423 502 - - gsm encode

gsm5+ 429 493 41 142 gsm encode

gsm6 200 219 - - RPE grid selection

gsm6+ 223 242 60 114 RPE grid selection

gsm7 82 112 - - Weighting filter

gsm7+ 90 120 11 20 Weighting filter

gsm8 33 38 - - Gsm Preprocess

gsm8+ 41 46 13 15 Gsm Preprocess

B.1.11 Bitcnts

This benchmark tests the bit manipulation abilities of a processor by counting

the number of bits in an array of integers by several different methods.
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ID Vertices Edges External All Original

Forbidden Forbidden function

Vertices Vertices

bitcnts1 61 63 - - bitcnts

bitcnts1Con 55 59 - bitcnts

bitcnts1+ 68 69 22 40 bitcnts

bitcnts1Con+ 60 63 32 40 bitcnts

bitcnts2 67 72 - - ntbl bitcount

bitcnts2Con 65 71 - - ntbl bitcount

bitcnts2+ 74 78 25 43 ntbl bitcount

bitcnts2Con+ 72 77 23 41 ntbl bitcount

bitcnts3 48 47 - - AR btbl bitcount

bitcnts3Con 41 43 - - AR btbl bitcount

bitcnts3+ 55 54 19 44 AR btbl bitcount

bitcnts3Con+ 46 48 12 36 AR btbl bitcount

bitcnts4 41 51 - - clock

bitcnts4+ 54 63 18 26 clock

B.2 Construction of test cases

The RHUL Dataset is constructed using the well known simplescalar toolset,

which is a system software infrastructure used in other aspects of processor

design.

To generate test cases, source code from the benchmarks in [GRE+01] were

compiled for the simplescalar architecture using a simplescalar-targeted version

of gcc with -O3 level of optimisation.

Simplescalar’s profiling tools were used to generate execution frequencies

for our basic blocks and the ‘ss2ddg’ tool was used to convert the basic blocks

from simplescalar assembler to DAGs.



Construction of test cases 210

addu $8,$0,$4

lw $9,0($5)

multu $9,$7

mflo $3

mfhi $4

addu $3,$3,$2

sltu $2,$3,$2

addu $2,$4,$2

addiu $6,$6,1

sw $3,0($8)

addiu $8,$8,4

addiu $5,$5,4

Figure B.1 Low-level code to be converted to a DDG

Three to eight basic blocks where taken from each benchmark to use as test

cases. Where possible the most heavily executed basic block was included as

a test case. The other test cases where selected by inspecting the code to find

basic blocks that were executed reasonably often, and that were large enough

to be of interest to our algorithms.

In this section, some of the issues in the construction of DDGs are explored

and ways that simplify the enumeration process are presented.

B.2.1 Generation of DDGs from low-level code

The code snippet in Figure B.1 is used as an example of the contents of a basic

block. A näıvely generated DDG for the code fragment in Figure B.1 would

resemble the one shown in Figure B.2. However, this DDG is not sufficient for

our purposes.

Operations storing more than one value

Figure B.1 shows the candidate instruction C that consists of the multiply op-

eration in Figure B.2 and its adjacent load operation. Notice that in Figure B.2

there are two data values leaving the multiply instruction using two different

registers. Recall that the number of outputs of a convex set is defined as the
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Figure B.2 DDG for example code in Section B.2.1

number of vertices in the convex set that directly depend on vertices outside

the set. Under this definition, candidate instruction C will have one output,

however the candidate instruction C will clearly store two values to the register

file rather than one.

It would be possible to alter our definition of OUT (C,D) in such a way

that these extra outputs were counted, but such a change would mean that

many of the previously presented algorithms would either no longer be able to

enumerate convex sets under I/O constraints or would need heavy modification.

Our solution is that if an operation a stores n values then it must be rep-

resented by n vertices, if a was dependent on another vertex in the DDG then

each of the new vertices must also be dependent on that vertex. In Figure B.2.1

a DDG is shown for the code in Figure B.1 with this modification taken into

account.

External inputs and outputs

The second issue is that of external inputs and outputs. The code segment

in Figure B.1 uses the values in $5,$6,$8,$9,$0, which are all written to from



Construction of test cases 212

ADDU

SW

ADDIUADDIU ADDIU

ADDIU

LW

ADDU

MFHIMFLO

MULTU1MULTU2

SLTU

? ???

?

?

? ? ?

?

?

?

?

? j�

�

	

j	

$6

$6 $5

$5

$8

$8

$5

$9 $9

$mlo $mhi

$3

$4

$2

$2
$3

$2

$2

$0

$8
� N N

$7 $7

Figure B.3 DDG with support for operations storing more than one value

outside of the basic block. Once again this may cause problems when exam-

ining the inputs and outputs of a given candidate instruction so the DDG is

augmented with extra vertices that represent the values entering and leaving

the basic block. Each register that is written from outside the basic block will

be represented by an individual vertex.

External outputs are dealt with in much the same way, except it is sufficient

to have a single extra vertex that is connected to all of the vertices that produce

values used outside the basic block.

A DDG generated from the code segment in Figure B.1 that incorporates

external inputs and outputs is shown in Figure B.4.

Clearly the extra vertices can not be part of a candidate instruction as they

represent the inputs or outputs to a basic block so they are made part of the

forbidden vertex set, see Section 2.4.1 for more details on forbidden vertices.
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Figure B.4 DDG for example code with support for external inputs and outputs
added

B.2.2 Data dependency analysis

It must be noted that when augmenting DAGs with external output vertices,

each register that could have been used outside the basic block was connected

to an external output. Without doubt, some of these connections made were

unnecessary and the register value in question was not used. The use of data-

dependency analysis would have been able to pinpoint these cases and allow for

a more accurate representation of the information flow within the basic block.
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Acknowledgement of intellectual property

Parts of the intellectual property in this work were developed in conjunction

with other members of the research group.

C.1 The Φ algorithm

The insight that if X is a convex vertex set of a DAG D, then X \ {x} is also

convex if x is either a source or a sink vertex of D and a sample algorithm

exploiting this insight were supplied by Dr S. Gerke and Dr P. Balister. The

algorithm was heavily rewritten and modified by the author before implemen-

tation.

C.2 The Ψ algorithm

The original algorithm of generation of convex connected sets was provided

by Dr A. Yeo. The author added support for forbidden vertices and all work

relating to the extension of the algorithm to disconnected convex vertex sets.

C.3 The Ω family

The use of flows in a network was proposed and an almost complete algorithm

was presented by Dr A.Yeo. As a result of collaboration with the group a full
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algorithm was prototyped. The forward and inverse edge based approach for

measuring flow is the work of Dr A.Yeo, however large parts of the algorithm

where later rewritten by the author particularly in the area of output set enu-

meration and the recursive flow of the algorithm. Lemma 24 was originally the

work of Dr A.Yeo but has been modified by the author.

C.4 Toolchain

The application for generating DAGs from assembler code was originally im-

plemented by Dr A. Johnstone and heavily extended by the author.

C.5 Artwork

Example 2 was originally drawn by Dr E. Scott.
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